Полупроводниковые диоды и транзисторы, области их пременеия. Полупроводниковые диоды и транзисторы Биополярные и полевые транзисторы

Привет всем читателям "Радиосхем ", меня зовут Дима и сегодня я расскажу простыми словами и их свойствах, а также о транзисторах и диодах. Итак, приступим, для начала вспомните, какие вы элементы электроники встречали? И их принцип работы? Если вы начали сразу изучать диоды и транзисторы, то у вас возникнет много вопросов. Поэтому лучше начать с закона Ома, а потом приступить к более простым конструкциям. Транзисторы и диоды - не очень простые элементы, обладающие свойством полупроводника.

Вы знаете как работает простой проводник - ничего сложного. Электроны с большой скоростью проходят через атом, сталкиваясь с ними. При этом возникает сопротивление, вы уже встречали это слово, конечно встречали. Вот лучший друг сопротивления называется резистор. Резистор - это пассивный элемент, обладающей бОльшим сопротивлением, чем обычный проводник. Ладно, идём дальше, нам надо узнать что же представляет из себя полупроводник? У полупроводника в атомной связи есть лишние электроны, их называют свободными электронами, и есть дырки. Дырки - это пустые места, в которых должны находиться электроны. На рисунке 1, изображено внутреннее строение межатомных связей полупроводника.

Рисунок 1. Внутреннее строение межатомных связей полупроводника.

Теперь разберёмся - как полупроводник пропускает ток. Представим, что мы подключили полупроводник к гальваническому элементу, например к обычной батарее. Ток начинает двигаться от плюса к минусу. При тепловых явлениях электроны проходящие через полупроводник начинают выхватывать из межатомных связей электроны. Происходят дырки, а свободные электроны сопровождаются проходящими электронами гальванического элемента. Те же электроны, которые попадут на дырку, как бы впрыгнут в неё, восстановив межатомную связь. Проще говоря в полупроводнике при поступлении на него тока нарушаются межатомные связи, электроны вылетают и становятся свободным, другие заполняют дырки, встретив на их пути. И этот процесс происходит бесконечно. На рисунке 2 показано движение электронов.

Рисунок 2. Движение и направление электронов и дырок.

Полупроводниковые диоды

Итак, мы разобрались что из себя представляет полупроводник и какой у него принцип работы. Теперь приступим к диодам, не самым простейшим радиоэлектронным элементам. Выше уже говорил про p-n переход. Теперь подробней: p - это positive (позитив, положительный), n - negative (негатив, отрицательный). Давайте разберёмся как движутся электроны в диоде. Представим, если мы подключим гальванический элемент, например батареи так, чтоб была полярность. Ах да - мы же не разобрались в полярности. Мы уже знаем структуру диода: p-n переход, p - положительный является анодом, n - отрицательный является катодом. На корпусе диода есть тоненькая белая полоска - она чаще всего является катодом, её присоединяют к минусу, а другой вывод является анодом, который присоединяется к плюсу. Теперь разберёмся с движение электронов. Мы присоединили полярно выводы диода, теперь возникает ток. Электроны положительной области начинают двигаться к минусу батареи, а электроны отрицательной области начинают двигаться к плюсу, они встречаются друг с другом, электроны как бы впрыгивают в дырки, в результате и те и другие прекратили своё существование. Эта электропроводность называется электроно-дырочной электропроводностью, электроны движутся с небольшим сопротивлением, показано на рисунке 3 (А). Этот ток называется прямым током Iпр, а что же будет если поменять полярность так, чтобы анод был соединён с минусом, а катод с плюсом. Что же будет происходить? Положительная область, короче дырки начнут двигаться к минусу батареи, а свободные электроны к плюсу, в результате возникнет большая область, она заштрихована на рисунке 3 (Б). Этот ток называется обратным, обладающим очень большим сопротивлением, превышающим несколько сотен Ом, килоом и даже мегаом.

Итак, разобрались с p-n переходом, давайте теперь поговорим о предназначении диода. Диоды используются для детекторных приёмников, чтобы из переменного тока создавать пульсирующий постоянный. А что такое вообще переменный ток? Давайте вспоминать. Переменный ток - это ток который способен менять своё направление в течении каждого полупериода, единицы времени. Как же диод сможет сделать из переменного тока пульсирующий? А вот как: вы же помните, что диод пропускает ток только в одну сторону.

Рисунок 3. Движение электронов обратного и прямого тока в диоде.

Когда ток начинает двигаться от плюса к минусу, проходит прямой ток, спокойно без большого сопротивления, но когда ток начинает двигаться от минуса к плюсу, то возникает обратный ток, который диод не пропускает. Вы наверняка видели график переменного напряжения, такая волнистая линия - сунусоида. Если прикрыть нижнюю линию, то получиться пульсирующий ток. Значит диод как бы отсёк нижнею часть. Ток будет двигаться только в одну сторону - это от плюса к минусу. Разобрались? Тогда теперь приступим к транзисторам.

Биополярные и полевые транзисторы

Итак, мы подошли к биополярным и полевым транзисторам. Мы изучим только биополярные транзисторы, а полевые пока не будем трогать - отложим для следующего занятия. Биополярные транзисторы ещё иногда называют простыми. В общем мы уже изучили полупроводники и их свойства, а также диод и p-n переход. Теперь подошли к более сложной структуре. Структуре? Думаете что же это, мы уже изучили структуру диода. Напомним, что структура - это несколько полупроводников обладающим либо дырочной проводимостью, либо электронной проводимостью, вот эта структура знакома как p-n переход. У простого (биполярного) транзистора есть две структуры. Это p-n-p структура и n-p-n структура. А вы же не изучили выводы. Ну конечно, в простом транзисторе как и в полевом три вывода. Только у обычного транзистора другие название выводов и другой принцип работы. Ладно, давайте рассмотрим p-n-p структуру. Первый вывод это база, обладающая управляющим током, второй вывод - эмиттер, взаимодействует с базой, и третий вывод - коллектор, с него снимается повышенный ток. Теперь определим где какой вывод и к какой области он относиться. Первый вывод база, она принадлежит к электронной области, то есть "n", дальше эмиттер - принадлежит к положительному выводу который слева от базы, и коллектор принадлежит к положительному выводу, который справа от базы.

Итак, разберёмся с принципом работы транзистора. Если ток направить на эмиттер и на базу, то получиться p-n переход, там произойдёт избыток электронов, в результате коллектор соберёт этот сильный поток электронов и ток будет усиленный. Я забыл сказать - транзистор как и диод может находиться в двух состояниях: закрытом и открытом. Всё, мы разобрались с транзисторами и диодами, рисунок двух структур p-n-p и n-p-n показан ниже.

Рисунок 4. Две структуры транзистора: p-n-p и n-p-n.

На этом статья закончена, если что-то не понятно - обращайтесь, расскажу и отвечу. Всем пока. С вами был Дмитрий Цывцын .

Обсудить статью ПОЛУПРОВОДНИКОВЫЕ ТРАНЗИСТОРЫ И ДИОДЫ

Односторонняя проводимость контактов двух полупроводников (или металла с полупроводником) используется для выпрямления и преобразования переменных токов. Если имеется один электронно-дырочный переход, то его действие аналогично действию двухэлектродной лампы - диода (см.§ 105). Поэтому полупроводниковое устройство, содержащее один р-n -переход, называется полупроводниковым (кристаллическим ) диодом . Полупроводниковые диоды по конструкции делятся на точечные и плоскостные .

Рис. 339 Рис. 340

В качестве примера рассмотрим точечный германиевый диод (рис.339), в котором тонкая вольфрамовая проволока 1 прижимается к n -германию 2 острием, покрытым алюминием. Если через диод в прямом направлении пропустить кратковременный импульс тока, то при этом резко повышается диффузия А1 в Ge и образуется слой германия, обогащенный алюминием и обладающий р -проводимостью. На границе этого слоя образуется р-n -переход, обладающий высоким коэффициентом выпрямления. Благодаря малой емкости контактного слоя точечные диоды применяются в качестве детекторов (выпрямителей) высокочастотных колебаний вплоть до сантиметрового диапазона длин волн.

Принципиальная схема плоскостного меднозакисного (купроксного) выпрямителя дана на рис. 340. На медную пластину с помощью химической обработки наращивается слой закиси меди Сu 2 О, который покрывается слоем серебра. Серебряный электрод служит только для включения выпрямителя в цепь. Часть слоя Сu 2 О, прилегающая к Сu и обогащенная ею, обладает электронной проводимостью, а часть слоя Сu 2 О, прилегающая к Ag и обогащенная (в процессе изготовления выпрямителя) кислородом,- дырочной проводимостью. Таким образом, в толще закиси меди образуется запирающий слой с пропускным направлением тока от Сu 2 О к Сu ().

Технология изготовления германиевого плоскостного диода описана в § 249 (см. рис.325). Распространенными являются также селеновые диоды и диоды на основе арсенида галлия и карбида кремния. Рассмотренные диоды обладают целым рядом преимуществ по сравнению с электронными лампами (малые габаритные размеры, высокие к. п. д. и срок службы, постоянная готовность к работе и т. д.), но они очень чувствительны к температуре, поэтому интервал их рабочих температур ограничен (от –70 до +120°С). р-n- Переходы обладают не только прекрасными выпрямляющими свойствами, но могут быть использованы также для усиления, а если в схему ввести обратную связь, то и для генерирования электрических колебаний. Приборы, предназначенные для этих целей, получили название полупроводниковых триодов или транзисторов (первый транзистор создан в 1949 г. американскими физиками Д. Бардином, У. Браттейном и У. Шокли; Нобелевская премия 1956 г.).


Для изготовления транзисторов используются германий и кремний, так как они характеризуются большой механической прочностью, химической устойчивостью и большей, чем в других полупроводниках, подвижностью носителей тока. Полупроводниковые триоды делятся на точечные и плоскостные . Первые значительно усиливают напряжение, но их выходные мощности малы из-за опасности перегрева (например, верхний предел рабочей температуры точечного германиевого триода лежит в пределах 50 - 80°С). Плоскостные триоды являются более мощными. Они могут быть типа р-п-р и типа п-р-п в зависимости от чередования областей с различной проводимостью.

Для примера рассмотрим принцип работы плоскостного триода р-п-р , т. е. триода на основе n -полупроводника (рис. 341). Рабочие «электроды» триода, которыми являются база (средняя часть транзистора), эмиттер и коллектор (прилегающие к базе с обеих сторон области с иным типом проводимости), включаются в схему с помощью невыпрямляющих контактов - металлических проводников. Между эмиттером и базой прикладывается постоянное смещающее напряжение в прямом направлении, а между базой и коллектором - постоянное смещающее напряжение в обратном направлении. Усиливаемое переменное напряжение подается на входное сопротивление , а усиленное - снимается с выходного сопротивления

Протекание тока в цепи эмиттера обусловлено в основном движением дырок (они являются основными носителями тока) и сопровождается их «впрыскиванием» - инжекцией - в область базы. Проникшие в базу дырки диффундируют по направлению к коллектору, причем при небольшой толщине базы значительная часть инжектированных дырок достигает коллектора. Здесь дырки захватываются полем, действующим внутри перехода (притягиваются к отрицательно заряженному коллектору), и изменяют ток коллектора. Следовательно, всякое изменение тока в цепи эмиттера вызывает изменение тока в цепи коллектора.

Прикладывая между эмиттером и базой переменное напряжение, получим в цепи коллектора переменный ток, а на выходном сопротивлении - переменное напряжение. Величина усиления зависит от свойств p-n -переходов, нагрузочных сопротивлений и напряжения батареи Б к. Обычно >> , поэтому значительно превышает входное напряжение (усиление может достигать 10 000). Так как мощность переменного тока, выделяемая в , может быть больше, чем расходуемая в цепи эмиттера, то транзистор дает и усиление мощности. Эта усиленная мощность появляется за счет источника тока, включенного в цепь коллектора.

Из рассмотренного следует, что транзистор, подобно электронной лампе, дает усиление и напряжения и мощности. Если в лампе анодный ток управляется напряжением на сетке, то в транзисторе ток коллектора, соответствующий анодному току лампы, управляется напряжением на базе.

Принцип работы транзистора п-р-п -типа аналогичен рассмотренному выше, но роль дырок играют электроны. Существуют и другие типы транзисторов, так же как и другие схемы их включения. Благодаря своим преимуществам перед электронными лампами (малые габаритные размеры, высокие к. п. д. и срок службы, отсутствие накаливаемого катода и поэтому потребление меньшей мощности, отсутствие необходимости в вакууме и т. д.), транзистор совершил революцию в области электронных средств связи и обеспечил создание быстродействующих ЭВМ с большим объемом памяти.

Контрольные вопросы

  • В чем суть адиабатического приближения и приближения самосогласованного поля?
  • Чем отличаются энергетические состояния электронов в изолированном атоме и кристалле? Что такое запрещенные и разрешенные энергетические зоны?
  • Чем различаются по зонной теории полупроводники и диэлектрики? металлы и диэлектрики?
  • Когда по зонной теории твердое тело является проводником электрического тока?
  • Как объяснить увеличение проводимости полупроводников с повышением температуры?
  • Чем обусловлена проводимость собственных полупроводников?
  • Почему уровень Ферми в собственном полупроводнике расположен в середине запрещенной зоны? Доказать это положение.
  • Каков механизм электронной примесной проводимости полупроводников? дырочной примесной проводимости?
  • Почему при достаточно высоких температурах в примесных полупроводниках преобладает собственная проводимость?
  • Каков механизм собственной фотопроводимости? примесной фотопроводимости? Что такое красная граница фотопроводимости?
  • Каковы по зонной теории механизмы возникновения флуоресценции и фосфоресценции?
  • В чем причины возникновения контактной разности потенциалов?
  • В чем суть термоэлектрических явлений? Как объяснить их возникновение?
  • Когда возникает запирающий контактный слой при контакте металла с полупроводником n -типа? с полупроводником р -типа? Объясните механизм его образования.
  • Как объяснить одностороннюю проводимость р-п -перехода?
  • Какова вольт-амперная характеристика p-n -перехода? Объясните возникновение прямого и обратного тока.
  • Какое направление в полупроводниковом диоде является пропускным для тока?
  • Почему через полупроводниковый диод проходит ток (хотя и слабый) даже при запирающем напряжении?

Задачи

31.1. Германиевый образец нагревают от 0 до 17°С. Принимая ширину запрещенной зоны кремния 0,72 эВ, определить, во сколько раз возрастет его удельная проводимость. [В 2,45 раза]

31.2. В чистый кремний введена небольшая примесь бора. Пользуясь Периодической системой Д. И. Менделеева, определить и объяснить тип проводимости примесного кремния.

31.3. Определить длину волны, при которой в примесном полупроводнике еще возбуждается фотопроводимость.

Полупроводниковым диодом называется прибор с двумя выходами и одним электиронно-дырочным переходом

Полупроводниковые диоды применяются в устройствах радиоэлектроники, автоматики и вычислительной техники, силовой преобразовательной техники. Диоды большой мощности используются в силовых установках для питания тяговых электродвигателей, привода станков и механизмов

Полупроводниковые диоды имеют ряд преимуществ по сравнению с электронными лампами: небольшие габариты, малую массу, высокий КПД, отсутствие накаливаемого источника электронов, большой срок службы, высокую надежность.

Важное свойство полупроводниковых диодов – односторонняя проводимость – широко применяется в устройствах выпрямления, ограничения и преобразования электрических сигналов.

Диоды классифицируются по назначению, физическим свойствам, основным электрическим параметрам, конструктивно-технологическим признакам (точечные и плоскостные), исходному полупроводниковому материалу.

По функциональному назначению различают полупроводниковые диоды: выпрямительные, импульсные, стабилитроны (опорные), фотодиоды, светоизлучающие диоды

1. выпрямительные предназначенные для преобразования переменного тока в постоянный и используют свойство р-н перехода, а также других электрических переходов хорошо проводить ток в одном направлении и плохо – в противоположном. Эти токи и соответствующие напряжения называют прямыми и обратными токами и напряжениями. различают низко и высокочастотные выпрямительные диоды. Первые применяют в преобразовательных устройствах энергетической электроники, вторые – для преобразования радиосигналов

2. импульсные предназначены для преимущественной работы в импульсных устройствах. Их свойства определяют параметры, учитывающие инерционность переключения диода: емкость перехода, интервал времени восстановления обратного сопротивления

3. стабилитроны предназначены для стабилизации постоянного напряжения и ограничения выбросов напряжения. В этих диодах используется явление неразрушающего электрического пробоя р-н перехода при некоторых значениях обратного напряжения. Важным параметром является температурный коэффициент стабилизации напряжения.

В основу маркировки положен буквенно-цифровой код

Первая буква или цифра обозначает материал полупроводникового кристалла: 1или Г – германий; 2 – К – кремний;3-А – арсенид галлия

Вторая буква обозначат класс диода: Д- выпрямительный, Аи – СВЧ диоды, В – варикап, С- стабилитрон, И -туннельный диод;



3 последующие цифры характеризуют тип или область применения 101-399 - выпрямление переменного тока, 401-499 – работа в высокочастотных или сверх частотных цепях, 501-599 - импульсные системы

Последняя цифра -обозначает конструктивные или другие особенности диода

Транзисторами называются активные полупроводниковые приборы с двумя взаимодействующими р-н переходами и тремя выводами, применяемые для усиления и генерирования электрических колебаний. (в связи, телевидении, радиолокации, радионавигации, автоматике, телемеханике, вычислительной и измерительной технике.)

Транзистор иметь трехслойную структуру, состоящую из чередующихся областей с различными типами электропроводимости р-н-р или н-р-н Принцип действия транзистора основан на использовании физических процессов, происходящих при переносе основных электрических зарядов из эмитерной области в коллекторную (крайние зоны) через базу (средняя зона). Назначением эмитерного перехода является инжекция (впрыскивание) основных носителей эмитерра в базовую область

Различают 4 режима работы транзистора:

Активный (переход эмиттер- база включен в прямом направлении а переход коллектор-база – в обратном)

Инверсный(переход эмиттер- база включен в обратном направлении а переход коллектор-база – в прямом)

Режим отсечки – оба перехода включены в обратном направлении

Режим насыщения - оба перехода включены в прямом направлении

Недостатком транзистора является относительно высокая нестабильность их параметров и характеристик. Причины нестабильности: влияние температуры окружающей среды, изменение параметров при старении с течением времени, разброс параметров в процессе изготовления однотипных транзисторов.

Транзисторы классифицируются по материалу, способу движения неосновных носителей в базовой области, мощности и частоте, назначению и способу изготовления

Московский Горный Государственный Университет

Реферат

по предмету СХЕМОТЕХНИКА

Полупроводниковые приборы.

(диод, транзистор, полевой транзистор)

ст. гр. САПР-1В-96

Царев А.В.

Москва 1999 г.

Оглавнение

Полупроводниковые диоды.

Полупроводниковые транзисторы.

Полевые МДП транзисторы.

Литература.

Полупроводниковые диоды

Диод - полупроводниковый прибор, пропускающий электрический ток только одного направления и имеющий два вывода для включения в электрическую цепь.

Полупроводниковый диод - полупроводниковый прибор p-n- переходом. Рабочий элемент- кристалл германия, обладающий проводимостью n–типа за счёт небольшой добавки донорной примеси Для создания в нём p-n-переходов в одну из его поверхностей вплавляют индий. Вследствие диффузии атомов индия вглубь монокристалла германия у поверхности германия образуется область р-типа. Остальная часть германия по-прежнему остаётся n- типа. Между этими двумя областями возникает р-n-переход. Для предотвращения вредных воздействий воздуха и света кристалл германия помещают в герметический корпус. устройство и схематическое изображение полупроводникового диода:

Достоинствами полупроводниковых диодов являются малые размеры и масса, длительный срок службы, высокая механическая прочность; недостатком - зависимость их параметров от температуры.

Вольт - амперная характеристика диода (при большом напряжении сила тока достигает наибольшей величины- ток насыщения) имеет нелинейный характер, поэтому свойства диода оцениваются крутизной характеристики:


Полупроводниковые транзисторы

Свойства p-n-пеpехода можно использовать для создания усилителя электрических колебаний, называемого полупроводниковым триодом или транзистором.

В полупроводниковом триоде две p-области кристалла разделяются узкой n-областью. Такой триод условно обозначают p-n-p. Можно делать и n-p-n триод, т.е. разделять две n-области кристалла узкой p-областью (рис.).


Триод p-n-p типа состоит из трех областей, крайние из которых обладают дырочной проводимостью, а средняя -электронной. К этим трем областям триода делаются самостоятельные контакты э, б и к, что позволяет подавать разные напряжения на левый p-n-пеpеход между контактами э и б и на правый n-p-пеpеход между контактами б и к.

Если на правый переход подать обратное напряжение, то он будет заперт и через него будет протекать очень малый обратный ток. Подадим теперь прямое напряжение на левый p-n-пеpеход, тогда через него начнёт проходить значительный прямой ток.

Одна из областей триода, например левая, содержит обычно в сотни раз большее количество примеси p-типа, чем количество n-пpимеси в n-области. Поэтому прямой ток через p-n-пеpеход будет состоять почти исключительно из дырок, движущихся слева направо. Попав в n-область триода, дырки, совершающие тепловое движение, диффундируют по направлению к n-p-переходу, но частично успевают претерпеть рекомбинацию со свободными электронами n-области. Но если n-область узка и свободных электронов в ней не слишком много (не ярко выраженный проводник n-типа), то большинство дырок достигнет второго перехода и, попав в него, переместится его полем в правую p-область. У хороших триодов поток дырок, проникающих в правую p-область, составляет 99% и более от потока, проникающего слева в n-область.

Если при отсутствии напряжения между точками з и б обратный ток в n-p-переходе очень мал, то после появления напряжения на зажимах з и б этот ток почти так же велик, как прямой ток в левом переходе. Таким способом можно управлять силой тока в правом (запертом) n-p-переходе с помощью левого p-n-перехода. Запирая левый переход, мы прекращаем ток через правый переход; открывая левый переход, получаем ток в правом переходе. Изменяя величину прямого напряжения на левом переходе, мы будем изменять тем самым силу тока в правом переходе. На этом и основано применение p-n-p-триода в качестве усилителя.


При работе триода (рис) к правому переходу подключается сопротивление нагрузки R и с помощью батареи Б подаётся обратное напряжение (десятки вольт), запирающее переход. При этом через переход протекает очень малый обратный ток, а всё напряжение батареи Б прикладывается к n-p-переходу. На нагрузке же напряжение равно нулю. Если подать теперь на левый переход небольшое прямое напряжение, то через него начнёт протекать небольшой прямой ток. Почти такой же ток начнёт протекать и через правый переход, создавая падения напряжения на сопротивлении нагрузки R. Напряжение на правом n-p-переходе при этом уменьшается, так как теперь часть напряжения батареи падает на сопротивлении нагрузки.

При увеличении прямого напряжения на левом переходе увеличивается ток через правый переход и растёт напряжение на сопротивлении нагрузки R. Когда левый p-n-переход открыт, ток через правый n-p-переход делается настолько большим, что значительная часть напряжения батареи Б падает на сопротивлении нагрузки R.

Таким образом, подавая на левый переход прямое напряжение, равное долям вольта, можно получить большой ток через нагрузку, причём напряжение на ней составит значительную часть напряжения батареи Б, т.е. десятки вольт. Меняя напряжение, подводимое к левому переходу, на сотые доли вольта, мы изменяем напряжение на нагрузке на десятки вольт. таким способом получают усиление по напряжению.

Усиления по току при данной схеме включения триода не получается, так как ток, идущий через правый переход, даже немного меньше тока, идущего через левый переход. Но вследствие усиления по напряжению здесь происходит усиление мощности. В конечном счете усиление по мощности происходит за счёт энергии источника Б.

Действие транзистора можно сравнить с действием плотины. С помощью постоянного источника (течения реки) и плотины создан перепад уровней воды. Затрачивая очень небольшую энергию на вертикальное перемещение затвора, мы можем управлять потоком воды большой мощности, т.е. управлять энергией мощного постоянного источника.

Переход, включаемый в проходном направлении (на рисунках - левый), называется эмиттерным, а переход, включаемый в запирающем направлении (на рисунках - правый) - коллекторным. Средняя область называется базой, левая - эмиттером, а правая - коллектором. Толщина базы составляет лишь несколько сотых или тысячных долей миллиметра.

Срок службы полупроводниковых триодов и их экономичность во много раз больше, чем у электронных ламп. За счёт чего транзисторы нашли широкое применение в микроэлектронике - теле-, видео-, аудио-, радиоаппаратуре и, конечно же, в компьютерах. Они заменяют электронные лампы во многих электрических цепях научной, промышленной и бытовой аппаратуры.

Преимущества транзисторов по сравнению с электронными лампами - те же, как и у полупроводниковых диодов - отсутствие накалённого катода, потребляющего значительную мощность и требующего времени для его разогрева. Кроме того транзисторы сами по себе во много раз меньше по массе и размерам, чем электрические лампы, и транзисторы способны работать при более низких напряжениях.

Но наряду с положительными качествами, триоды имеют и свои недостатки. Как и полупроводниковые диоды, транзисторы очень чувствительны к повышению температуры, электрическим перегрузкам и сильно проникающим излучениям (чтобы сделать транзистор более долговечным, его запаковывают в специальный “футляр”).

Основные материалы из которых изготовляют триоды - кремний и германий.

Полевые МДП транзисторы.

Полевым транзистором (ПТ) называют трехэлектродный полупроводниковый прибор, в котором электрический ток создают основные носители заряда под действием продольного электрического поля, а управление током осуществляется поперечным электрическим полем, создаваемым напряжением на управляющем электроде.

В последние годы большое место в электронике заняли приборы, использующие явления в приповерхностном слое полупроводника. Основным элементом таких приборов является структура Металл-Диэллектрик-Полупроводник /МДП/. В качестве диэлектрической прослойки между металлом и полупроводником часто используют слой оксида, например диоксид кремния. Такие структуры носят название МОП-структур. Металлический электрод обычно наносят на диэлектрик вакуумным распылением. Этот электрод называется затвором.

ПТ являются униполярными полупроводниковыми приборами, так как их работа основана на дрейфе носителей заряда одного знака в продольном электрическом поле через управляемый канал n- или p-типа. Управление током через канал осуществляется поперечным электрическим полем, а не током, как в биполярных транзисторах. Поэтому такие транзисторы называются полевыми.

Полевые транзисторы с затвором в виде p-n перехода в зависимости от канала делятся на ПТ с каналом p-типа и n-типа. Канал p-типа обладает дырочной проводимостью, а n-типа – электронной.


Если на затвор подать некоторое напряжение смещения относительно полупроводника, то у поверхности полупроводника возникает область объемного заряда, знак которой противоположен знаку заряда на затворе. В этой области концентрация носителей тока может существенно отличаться от их объемной концентрации.

Заряжение приповерхностной области полупроводника приводит к появлению разности потенциалов между нею и объемом полупроводника и, следовательно, к искривлению энергетических зон. При отрицательном заряде на затворе, энергетические зоны изгибаются вверх, так как при перемещении электрона из объема на поверхность его энергия увеличивается. Если затвор заряжен положительно то зоны изгибаются вниз.


Hа рисунке показана зонная структура n-полупроводника при отрицательном заряде на затворе и приведены обозначения основных величин, характеризующих поверхность; разность потенциалов между поверхностью и объемом полупроводника; изгиб зон у поверхности; середина запрещенной зоны. Из рисунка видно, что в объеме полупроводника расстояние от дна зоны проводимости до уровня Ферми меньше расстояния от уровня Ферми до потолка валентной зоны. Поэтому равновесная концентрация электронов больше концентрации дырок: как и должно быть у n-полупроводников. В поверхностном слое объемного заряда происходит искривление зон и расстояния от дна зоны проводимости до уровня Ферми по мере перемещения к поверхности непрерывно увеличивается, а расстояние до уровня Ферми до потолка валентной зоны непрерывно уменьшается.

Часто изгиб зон у поверхности выражают в единицах kT и обозначают Ys. Тогда при формировании приповерхностной области полупроводника могут встретиться три важных случая: обеднение, инверсия и обогащение этой области носителями заряда. Эти случаи для полупроводников n- и p-типа представлены на рис.

Обедненная область появляется в том случае, когда заряд затвора по знаку совпадает со знаком основных носителей тока. Вызванный таким зарядом изгиб зон приводит к увеличению расстояния от уровня Ферми до дна зоны проводимости в полупроводнике n-типа и до вершины валентной зоны в полупроводнике p-типа. Увеличение этого расстояния сопровождается обеднением приповерхностной области основными носителями. При высокой плотности заряда затвора, знак которого совпадает со знаком заряда основных носителей, по мере приближения к поверхности расстояние от уровня Ферми до потолка валентной зоны в полупроводнике n-типа оказывается меньше расстояния до дна зоны проводимости. Вследствие этого, концентрация не основных носителей заряда /дырок/ у поверхности полупроводника становится выше концентрации основных носителей и тип проводимости этой области изменяется, хотя и электронов и дырок здесь мало, почти как в собственном полупроводнике. У самой поверхности, однако, не основных носителей может быть столько же или даже больше, чем основных в объеме полупроводника. Такие хорошо проводящие слои у поверхности с типом проводимости, противоположным объемному, называют инверсионными. К инверсионному слою вглубь от поверхности примыкает слой обеднения.

Если знак заряда затвора противоположен знаку заряда основных носителей тока в полупроводнике, то под его влиянием происходит притяжение к поверхности основных носителей и обогащение ими приповерхностного слоя. Такие слои называются обогащенными.

В интегральной электронике МДП-структуры широко используются для создания транзисторов и на их основе различных интегральных микроcхем. На рис. схематически показана структура МДП-транзистора с изолированным затвором. Транзистор состоит из кристалла кремния /например n-типа/, у поверхности которого диффузией /или ионной имплантацией/ в окна в оксиде формируются р-области, как показано на рис. Одну из этих областей называют истоком, другую - стоком. Сверху на них наносят омические контакты. Промежуток между областями покрывают пленкой металла, изолированной от поверхности кристалла слоем оксида. Этот электрод транзистора называют затвором. Hа границе между р- и n-областями возникают два р-n-перехода - истоковый и стоковый, которые на рисунке. показаны штриховкой.

Hа рис. приведена схема включения транзистора в цепь: к истоку подсоединяют плюс, к стоку - минус источника напряжения, к затвору - минус источника. Для простоты рассмотрения будем считать, что контактная разность потенциалов, заряд в оксиде и поверхностные состояния отсутствуют. Тогда свойства поверхностной области, в отсутствие напряжения на затворе, ничем не отличаются от свойств полупроводников в объеме. Сопротивление между стоком и истоком очень велико, так как стоковый р-n-переход оказывается под обратным смещением. Подача на затвор отрицательного смещения сначала приводит к образованию под затвором обедненной области, а при некотором напряжении называемом пороговым, - к образованию инверсионной области, соединяющей p-области истока и стока проводящим каналом. При напряжениях на затворе выше канал становится шире, а сопротивление сток-исток - меньше. Рассматриваемая структура является, таким образом, управляемым резистором.

Однако сопротивление канала определяется только напряжением на затворе лишь при небольших напряжениях на стоке. С увеличением носители из канала уходят в стоковую область, обедненный слой у стокового n-p-перехода расширяется и канал сужается. Зависимость тока от напряжения на стоке становится нелинейной.

При сужении канала число свободных носителей тока под затвором уменьшается по мере приближения к стоку. Чтобы ток в канале был одним и тем же в любом его сечении, электрическое поле вдоль канала должно быть, в таком случае, неоднородным, его напряженность должна расти по мере приближения к стоку. Кроме того, возникновение градиента концентрации свободных носителей тока вдоль канала приводит к возникновению диффузионной компоненты плотности тока.

При некотором напряжении на стоке канал у стока перекрывается, при еще большем смещении канал укорачивается к истоку. Перекрытие канала однако не приводит к исчезновению тока стока, поскольку в обедненном слое, перекрывшем канал, электрическое поле тянет дырки вдоль поверхности. Когда носители тока из канала вследствие диффузии попадают в эту область, они подхватываются полем и перебрасываются к стоку. Таким образом, по мере увеличения напряжения на стоке чисто дрейфовый механизм движения носителей тока вдоль канала сменяется диффузионно-дрейфовым.

Механизм протекания тока в МДП-транзисторе при сомкнутом канале имеет некоторые общие черты с протеканием тока в обратно-смещенном n-p-переходе. Напомним, что в n-p-переходе неосновные носители тока попадают в область пространственного заряда перехода вследствие диффузии и затем подхватываются его полем.

Как показывают теория и эксперимент, после перекрытия канала ток стока практически насыщается. Значение тока насыщения зависит от напряжения на затворе чем выше, тем шире канал и тем больше ток насыщения. Это типично транзисторный эффект - напряжением на затворе (во входной цепи) можно управлять током стока (током в выходной цепи). Характерной особенностью МДП-транзисторов является то, что его входом служит конденсатор, образованный металлическим затвором, изолированным от полупроводника.

На границе раздела полупроводник - диэлектрик в запрещенной зоне полупроводника существуют энергетические состояния, называемые поверхностными или, точнее, состояниями граници раздела. Волновые функции электронов в этих состояниях локализованы вблизи поверхности раздела в областях порядка постоянной решетки. Причина возникновения рассматриваемых состояний состоит в неидеальности граници раздела полупроводник - диэллектрик (оксид). На реальных границах раздела всегда имеется некоторое количество оборванных связей и нарушается стехиометрия состава оксидной пленки диэллектрика. Плотность и характер состояний граници раздела существенно зависят от технологии создания диэллектрической пленки.

Наличие поверхностных состояний на границе раздела полупроводник-диэллектрик отрицательно сказывается на параметрах МДП-транзистора, так как часть заряда, наведенного под затвором в полупроводнике, захватывается на эти состояния. Успех в создании полевых транзисторов рассматриваемого типа был достигнут после отработки технологии создания пленки на поверхности кремния с малой плотностью состояний границы раздела.

В самом оксиде кремния всегда существует положительный "встроенный" заряд, природа которого до сих пор до конца не выяснена. Значение этого заряда зависит от технологии изготовления оксида и часто оказывается настолько большим, что если в качестве подложки используется кремний р-типа проводимости, то у его поверхности образуется инверсионный слой уже при нулевом смещении на затворе. Такие транзисторы называются транзисторами со ВСТРОЕННЫМ КАНАЛОМ. Канал в них сохраняется даже при подаче на затвор некоторого отрицательного смещения. В отличие от них в транзисторах, изготовленных на n-подложке, в которой для образования инверсионного слоя требуется слишком большой заряд оксида, канал возникает только при подаче на затвор напряжения, превышающего некоторое пороговое напряжение. По знаку это смещение на затворе должно быть отрицательным для транзисторов с n-подложкой и положительным в случае p-подложки.

При больших напряжениях на стоке МДП-транзистора область объемного заряда от стоковой области может распространиться настолько сильно, что канал вообще исчезнет. Тогда к стоку устремятся носители из сильно легированной истоковой области, точно так же как при "проколе" базы биполярного транзистора.

Литература:

"Твердотельная электроника" Г.И.Епифанов, Ю.А.Мома.

“Электроника и Микросхемотехника” В.А. Скаржепа, А.Н. Луценко.

Основным элементом большинства полупроводниковых элементов является p-n переход.

р-n переходом называется область на границе полупроводников р и n типов.

Условно р-n переход можно показать следующим образом:

Опыт 12.3. Полупроводниковый диод.

Цель работы: Изучить принцип работы полупроводникового диода.

Оборудование:

  1. Источник регулируемого переменного напряжения
  2. Осциллограф
  3. Стенд со схемой

Ход работы.

1. Установка состоит из источника регулируемого переменного напряжения, осциллографа и стенда со схемой. Переменное напряжение от источника подается на вход стенда. На экране осциллографа наблюдается синусоида. Если увеличивать или уменьшать подаваемое напряжение, то, соответственно, увеличивается или уменьшается амплитуда синусоидального сигнала, видимого на экране осциллографа.

2. Изучим характер тока, протекающего через диод. Напряжение, попадающее на стенд, подается на края цепочки, состоящей из последовательно соединенных сопротивления и диода. В результате через цепочку идет уже не переменный ток, а пульсирующий, поскольку диод выпрямляет ток. Он пропускает ток в одном направлении и не пропускает в другом. На схеме диод изображается таким образом, что острие треугольника, на данном этапе оно направлено вверх, указывает направление тока проходящего через диод. Для того, чтобы выяснить, каков характер тока, проходящего через диод, на вертикальный усилитель подается напряжение, которое снимается с концов сопротивления. Это напряжение пропорционально току, текущему через сопротивление. Наблюдают, что ток через диод действительно течет только в одном направлении. Полпериода ток отсутствует - горизонтальные участки, полпериода ток идет. Это половинки синусоид, которые смотрят вниз. Но если менять величину напряжения, подаваемую на вход стенда, будет меняется и величина тока, текущего через диод. Диод извлекают из стенда (сигнал на экране осциллографа пропал). Если повернуть диод на 180 градусов, острие треугольника на схеме будет направлено вниз, т.е. изменится направление тока, протекающего через диод. После установки диода на стенде вновь появляется сигнал на экране осциллографа, однако теперь уже те полпериода, которые соответствуют протеканию тока через диод, отображаются половинками синусоиды, направленными вверх.

3. Вольт-амперная характеристика диода – зависимость между током, протекающим через диод, и напряжением, которое подается на диод. Ток, протекающий через диод, по-прежнему пропорционален напряжению на концах сопротивлений. Это напряжение подается на вертикальный вход осциллографа, а на горизонтальный - напряжение с концов этой цепочки, оно пропорционально напряжению на диоде. В результате на экране осциллографа наблюдается вольт-амперная характеристика диода. Полпериода тока нет, это горизонтальный участок этой характеристики, и полпериода ток идет. Здесь в определенной степени выполняется закон Ома. Величина тока, текущего через диод, пропорциональна напряжению, подаваемому на диод. Если увеличивать или уменьшать напряжение, которое подается на диод, соответственно увеличивается или уменьшается ток, текущий через диод.

Вывод: Односторонняя проводимость p-n перехода позволяет создать выпрямляющее полупроводниковое устройство – полупроводниковый диод.

1. Знак проводимости соответствует знаку источника, тогда дырки переместятся влево, электроны вправо. Через р-n переход пойдет электрический ток, состоящий из электронов и дырок.

2. Знак проводимости противоположен знаку источника, тогда носители заряда движутся к полюсам, не переходя границу контакта полупроводников, ток через р-n переход не возникает, следовательно, р-n переход обладает односторонней проводимостью.

р-n переход используется в полупроводниковых диодах.

Транзистор – полупроводниковый прибор, который состоит из двух р-n переходов, включенных встречно. Эмиттер – область транзистора, откуда берутся носители заряда. Коллектор – область, куда стекаются носители заряда. База выполняет роль, аналогичную роли управляющей сетки в лампе.

Транзисторы служат для усиления электрических сигналов, потому что небольшое изменение напряжения между эмиттером и базой приводит к значительному изменению напряжения на нагрузке, включенной в цепи коллектора.

Опыт 12.4. Усилитель постоянного тока на транзисторе

Оборудование:

1. Транзистор на подставке

2. Фотодиод на подставке

3. Источник тока В-24

4. Соединительные провода

5. Электрическая лампочка

6. Два демонстрационных гальванометра

Схема установки (Рис. 117):

При затемнении фотоэлемента ток небольшой. Если же осветить фотоэлемент, то ток возрастает на участке G2.

Контрольные вопросы к § 12.

1) Дайте определение полупроводникам?

2) Элементы каких групп таблицы Менделеева относятся к полупроводникам?

3) Назовите два рода носителей электрического заряда, имеющихся в полупроводнике.

4) Перечислите оборудование в опыте 12.1 «Действие полупроводникового фотоэлемента».

5) Перечислите оборудование в опыте 12.2 «Электронно-дырочные проводимости полупроводников».

6) Дайте определение p-n переходу?

7) Перечислите оборудование в опыте 12.3 «Полупроводниковый диод».

8) Дайте определение вольт-амперной характеристике?

9) Дайте определение транзистору?

10) Перечислите оборудование в опыте 12.4 «Усилитель постоянного тока на транзисторе».

11) Дайте определение эмиттеру?

12) Дайте определение коллектору?

13) Почему транзистор можно использовать для усиления электрических сигналов?

14) Как возникает электронная проводимость германия?

15) Как возникает дырочная проводимость германия?

16) Опишите устройство селенового фотоэлемента.

17) В каком полупроводниковом приборе используется односторонняя проводимость p-n перехода?

18) Опишите устройство полупроводникового диода.

19) Сколько p-n переходов существует в транзисторе?

20) Опишите устройство транзистора.