Эксплуатация средств автоматизации в химической промышленности. Эксплуатация средств автоматизации. Эксплуатация и ремонт средств автоматизации

Монтаж систем автоматизации должен производится в соответствии с рабочей документацией с учетом требований предприятий - изготовителей приборов, средств автоматизации, агрегатных и вычислительных комплексов, предусмотренных техническими условиями или инструкциями по эксплуатации этого оборудования.

Работы по монтажу следует выполнять индустриальным методом с использованием средств малой механизации, механизированного и электрифицированного инструмента и приспособлений, сокращающих применение ручного труда.

Работы по монтажу систем автоматизации должны осуществляться в две стадии (этапа):

На первой стадии следует выполнять: заготовку монтажных конструкций, узлов и блоков, элементов электропроводок и их укрупнительную сборку вне зоны монтажа; проверку наличия закладных конструкций, проемов, отверстий в строительных конструкциях и элементах зданий, закладных конструкций и отборных устройств на технологическом оборудовании и трубопроводах, наличия заземляющей сети; закладку в сооружаемые фундаменты, стены, полы и перекрытия труб и глухих коробов для скрытых проводок; разметку трасс и установку опорных и несущих конструкций для электрических и трубных проводок, исполнительных механизмов, приборов.

На второй стадии необходимо выполнять: прокладку трубных и электрических проводок по установленным конструкциям, установку щитов, стативов, пультов, приборов и средств автоматизации, подключение к ним трубных и электрических проводок, индивидуальные испытания.

Смонтированные приборы и средства автоматизации электрической ветви Государственной системы приборов (ГСП), щиты и пульты, конструкции, электрические и трубные проводки, подлежащие заземлению согласно рабочей документации, должны быть присоединены к контуру заземления. При наличии требований предприятий - изготовителей средства агрегатных и вычислительных комплексов должны быть присоединены к контуру заземления. При наличии требований предприятий - изготовителей средства агрегатных и вычислительных комплексов должны быть присоединены к контуру специального заземления.

Приборы и средства автоматизации

В монтаж должны приниматься приборы и средства автоматизации, проверенные с оформлением соответствующих протоколов.

В целях обеспечения сохранности приборов и оборудования от поломки, разукомплектования и хищения монтаж их должен выполняться после письменного разрешения генподрядчика (заказчика).

Проверка приборов и средств автоматизации производится заказчиком или привлекаемыми им специализированными организациями, выполняющими работы по наладке приборов и средств автоматизации методами, принятыми в этих организациях, с учетом требований инструкций Госстандарта и предприятий - изготовителей.

Приборы и средства автоматизации, принимаемые в монтаж после проверки, должны быть подготовлены для доставки к месту монтажа. Подвижные системы должны быть арретированы, присоединительные устройства защищены от попадания в них влаги, грязи и пыли.

Вместе с приборами и средствами автоматизации должны быть переданы монтажной организации специальные инструменты, принадлежности и крепежные детали, входящие в их комплект, необходимые при монтаже.

Размещение приборов и средств автоматизации и их взаимное расположение должны производится по рабочей документации. Их монтаж должен обеспечить точность измерений, свободный доступ к приборам и их запорным и настроечным устройствам (кранам, вентилям, переключателям, рукояткам настройки и т.п.).

В местах установки приборов и средств автоматизации, малодоступных для монтажа и эксплуатационного обслуживания, должно быть до начала монтажа закончено сооружение лестниц колодцев и площадок в соответствии с рабочей документацией.

Приборы и средства автоматизации должны устанавливаться при температуре окружающего воздуха и относительной влажности, оговоренных в монтажно-эксплуатационных инструкциях предприятий-изготовителей.

Присоединение к приборам внешних трубных проводок должно осуществляться в соответствии с требованиями ГОСТ 25164 - 82 и ГОСТ 10434 - 82, ГОСТ 25154 - 82, ГОСТ 25705 - 83, ГОСТ 19104 - 79 и ГОСТ 23517 - 79.

Крепление приборов и средств автоматизации к металлическим конструкциям (щитам, стативам, стендам и т.п.) должно осуществляться способами, предусмотренными конструкцией приборов и средств автоматизации и деталями, входящими в их комплект. Если в комплект отдельных приборов и средств автоматизации крепежные детали не входят, то они должны быть закреплены нормализованными крепежными изделиями.

При наличии вибраций в местах установки приборов резьбовые крепежные детали должны иметь приспособления, исключающие самопроизвольное их отвинчивание (пружинные шайбы, контргайки, шплинты и т.п.).

Отверстия приборов и средств автоматизации, предназначенные для присоединения трубных и электрических проводок, должны оставаться заглушенными до момента подключения проводок.

Корпуса приборов и средств автоматизации должны быть заземлены в соответствии с требованиями инструкций предприятий-изготовителей и СНиП 3.05.06-85.

Чувствительные элементы жидкостных термометров, термосигнализаторов, манометрических термометров, преобразователей термоэлектрических (термопар), термопреобразователей сопротивления должны, как правило, располагаться в центре потока измеряемой среды. При давлении свыше 6 МПа (60 кгс/см 2) и скорости потока пара 40 м/с и воды 5 м/с глубина погружения чувствительных элементов в измеряемую среду (от внутренней стенки трубопровода) должна быть не более 135мм.

Рабочие части поверхностных преобразователей термоэлектрических (термопар) и термопреобразователей сопротивления должны плотно прилегать к контролируемой поверхности.

Перед установкой этих приборов место соприкосновения их с трубопроводами и оборудованием должно быть очищено от окалины и зачищено до металлического блеска.

Преобразователи термоэлектрические (термопары) в фарфоровой арматуре допускается погружать в зону высоких температур на длину фарфоровой защитной трубки.

Термометры, у которых защитные чехлы изготовлены из разных металлов, должны погружаться в измеряемую среду на глубину не более указанной в паспорте предприятия - изготовителя.

Не допускается прокладка капилляров манометрических термометров по поверхностям, температура которых выше или ниже температуры окружающего воздуха.

При необходимости прокладки капилляров в местах с горячими или холодными поверхностями между последними и капилляром должны быть воздушные зазоры, предохраняющие капилляр от нагревания или охлаждения, или должна быть проложена соответствующая теплоизоляция.

По всей длине прокладки капилляры манометрических термометров должны быть защищены от механических повреждений.

При лишней длине капилляр должен быть свернут в бухту диаметром не менее 300мм; бухта должна быть перевязана в трех местах неметаллическими перевязками и надежно закреплена у прибора.

Приборы для измерения давления пара или жидкости по возможности должны быть установлены на одном уровне с местом отбора давления; если это требование невыполнимо, рабочей документацией должна быть определена постоянная поправка к показаниям прибора.

Жидкостные U - образные манометры устанавливаются строго вертикально. Жидкость, заполняющая манометр, должна быть не загрязнена и не должна содержать воздушных пузырьков.

Пружинные манометры (вакуумметры) должны устанавливаться в вертикальном положении.

Разделительные сосуды устанавливаются согласно нормалям или рабочим чертежам проекта, как правило, вблизи мест отбора импульсов. Разделительные сосуды должны устанавливаться так, чтобы контрольные отверстия сосудов располагались на одном уровне и могли легко обслуживаться эксплуатационным персоналом.

При пьезометрическом измерении уровня открытый конец измерительной трубки должен быть установлен ниже минимального измеряемого уровня. Давление газа или воздуха в измерительной трубке должно обеспечить проход газа (воздуха) через трубку при максимальном уровне жидкости. Расход газа или воздуха в пьезометрических уровнемерах должен быть отрегулирован на величину, обеспечивающую покрытие всех потерь, утечек и требуемое быстродействие системы измерения.

Монтаж приборов для физико-химического анализа и их отборных устройств должен производиться в строгом соответствии с требованиями инструкций предприятий - изготовителей приборов.

При установках показывающих и регистрирующих приборов на стене или на стойках, крепящихся к полу, шкала, диаграмма, запорная арматура, органы настройки и контроля пневматических и других датчиков должны находится на высоте 1-1.7м, а органы управления запорной арматурой - в одной плоскости со шкалой прибора.

Монтаж агрегатных и вычислительных комплексов АСУ ТП должен осуществляться по технической документации предприятий-изготовителей.

Все приборы и средства автоматизации, устанавливаемые или встраиваемые в технологические аппараты и трубопроводы (сужающие и отборные устройства, счетчики, ротаметры, поплавки уровнемеров, регуляторы прямого действия и т.п.), должны быть установлены в соответствии с рабочей документацией и с требованиями, указанными в обязательном приложении 5.

Эксплуатация приборов и средств автоматизации

В процессе эксплуатации приборов происходит частичная потеря работоспособности средств измерений и автоматизации, вызванная как длительностью их эксплуатации, так и воздействием окружающих и измеряемых сред. Для обеспечения безотказной работы средств измерений (далее по тексту - СИ) и автоматизации, восстановления их ресурса требуется проведение технического обслуживания.

Техническое обслуживание - это комплекс операций по поддержанию работоспособности и исправности СИ, автоматизации и средств автоматизации и схем СБ и ПАЗ. Осуществляется прибористами КИП и А на технологических установках ОАО «НОРСИ».

Руководящими материалами для проведения технической эксплуатации приборов являются:

Приказ № 325 от 1.11.99. «Об изменении продолжительности межремонтных циклов средствам КИП и А технологических установок»;

Инструкции заводов-изготовителей;

Правила эксплуатации электроустановок потребителей (ПЭЭП);

Правила устройства электроустановок (ПУЭ);

Настоящая инструкция.

Эксплуатация и ремонт средств автоматизации.

Эксплуатация средств автоматизации в сельскохозяйственном производстве имеет свои особенности, заключающиеся в том, что часть этих средств, таких, как датчики, исполнительные устройства, устанавливают непосредственно в производственных помещениях. Окружающая среда таких помещений агрессивна по отношению к элементам автоматики. В связи с этим все средства автоматизации, применяемые в сельскохозяйственном производстве, должны иметь соответствующую защиту от воздействия вредных факторов окружаю­щей среды производственных помещений.

Другой серьезный фактор, отрицательно влияющий на работу средств автоматизации в сельскохозяйственном производстве, - уро­вень напряжения, который в условиях сельской местности подвержен значительным колебаниям. Из-за этого стабильность работы автома­тических устройств существенно снижается.

Профилактические работы. В процессе эксплуатации средств авто­матизации особое внимание обращают на профилактические работы, предупреждающие выход из строя элементов автоматики и в значи­тельной степени исключающие аварии.

Цель этих работ заключается в следующем:

а) добиться гарантийных уровней сопротивления изоля­ции всех частей установок;

б) поддерживать в исправном состоянии кабельное хозяйство, провода, электромагнитные и моторные меха­низмы, реле, контакты и другую аппаратуру;

в) достигнуть соответст­вия параметров защит заданным уставкам;

г) поддерживать в исправ­ном состоянии и 100-%ной готовности к включению устройства ре­зервного питания; д) обеспечить соответствующую надежность действий блокировок и сблокированных частей схем, сигнализации и т. п.



Перед вводом средств автоматизации установок в эксплуатацию проводят технический (внешний) осмотр, в результате которого выяв­ляют ошибки монтажа и наладки. Техническому осмотру предшеству­ет предварительное изучение документации на автоматизацию, актов на скрытые работы, актов и протоколов ревизий и паспортов оборудо­вания и т. д.

Техническое обслуживание. Комплекс мероприятий по техническо­му обслуживанию средств автоматизации включает следующее рабо­ты:

1) профилактические, направленные на предотвращение отказов (замена элементов, смазочные и крепежные работы и т. д.);

2) связан­ные с контролем технического состояния, цель которых - проверить соответствие параметров, характеризующих работоспособное со­стояние устройств автоматики, требованиям нормативно-техниче­ской документации (формуляр, паспорт и др.);

3) регулировочные и настроечные, предназначенные для доведения параметров средств автоматизации (блоков, датчиков, узлов) до значений, установленных нормативно-технической документацией.

Текущий ремонт направлен на восстановление рабо­тоспособности или исправности устройств автоматики путем устранения отказов и повреждений.

В зависимости от условий эксплуатации, конструк­тивных особенностей аппаратуры и характера отказов при организации ТО могут быть использованы три принципа: календарный, наработки и смешанный.

Календарный принцип состоит в том, что ТО назна­чается и проводится по истечении определенного ка­лендарного срока (день, неделя, месяц, квартал и т.д.), независимо от интенсивности использования устройств автоматики. Объем каждого ТО определяется эксплуа­тационной документацией (инструкцией по ТО, инструк­цией по эксплуатации и т. д.).

Принцип наработки предполагает назначение сро­ков ТО по достижении аппаратурой определенной на­работки. При этом наработка может исчисляться в часах работы, числе включений. Этот принцип может быть использован для организации ТО в тех случаях, когда отказы обусловлены процессами износа, аппара­тура работает в тяжелых условиях, значительно отли­чающихся от нормальных, или длительное время.

Смешанный принцип организации ТО применяется для устройств автоматики, у которых отказы обуслов­лены как процессами износа, так и процессами старе­ния.

10. Эксплуатация средств автоматизации

Эксплуатация камерной диафрагмы типа ДКС-10-150

Диафрагма устанавливается в трубопроводе, по которому протекает жидкое или газообразное вещество для сужения местного потока.

Качество изготовления сужающих устройств и особенно их правильный монтаж, имеют решающее значение для получения точных результатов измерения расхода.

Наружный диаметр зависит от присоединительных размеров трубопровода.

Сужающие устройства периодически прочищают, открывая вентиль. Продувку ведут до тех пор, пока не прекратиться выброс из сужающего устройства осадков, скопившихся в камерноотборных отверстиях.

На время продувки, дифманометр отключают, так как при сообщении с атмосферой одного вывода сужающего устройства, по второму выводу на дифманометр будет действовать статическое давление в трубопроводе во много раз превышающий предел давления.

Эксплуатация дифманометра типа ДМ

Перед установкой, дифманометр необходимо заполнить измеряемой жидкостью. Для этого на клапаны типового и импульсного сосудов, поочередно надевают резиновый шланг с сосудом, емкостью 0,005-0,001 м 3 , заполненный измеряемой жидкостью. Не реже одного раза в сутки проверяют нулевую точку, для поверки открывают уравнительный вентиль.

Если результат измерения вызывает сомнения, проводят контрольную поверку на рабочем месте.

Снимать показания измеряемого параметра жидкости на следующий день после включения дифманометра, периодически постукивая по соединительным импульсным линиям между диафрагмой и дифманометром для полного удаления пузырьков воздуха.

Если дифманометр предназначен для измерения параметров газа при отрицательных температурах окружающей среды (до -30 0 С) рабочие камеры его необходимо тщательно продуть сухим сжатым воздухом.

Дифманометры должны содержаться в чистоте.

Эксплуатация блока питания БПС-90П

Текущее обслуживание блока заключается в ежедневной проверке правильности его работы по регистрирующему прибору РМТ.

Ежемесячно необходимо проверять надежность затяжки контактных винтов при отключенном от прибора напряжения питания.

Во время капитального ремонта технологической установки следует проводить лабораторную проверку выходных параметров блока с составлением протокола.

Эксплуатация преобразователя Метран-100

Все приборы для измерения давления и разряжения обеспечивают показания в течение длительного времени, если выполняются нормальные условия.

Преобразователь состоит из измерительного блока и электронного блока. Преобразователи различных параметров имеют унифицированное электронное устройство и отличаются лишь конструкцией измерительного блока. Перед включением преобразователей нужно убедиться в соответствии их установки и монтажа.

Подключение питания к плюю через 30 минут после включения электропитания проверьте и при необходимости установите в соответствие значения выходного сигнала преобразователя. Соответствующее нижнему значению измеряемого параметра. Установку производят с помощью элементов настройки "нуля" с точностью не хуже 0,2Дх, бех учета погрешности контролируемых средств. Контроль значения выходного сигнала может производиться так же с помощью милливольтметра постоянного тока, подключаемого к клеммам 3-4 электронного преобразователя. При выборе милливольтметра необходимо учитывать, что падение напряжения на нем не должно превышать 0,1В. Установка выходного сигнала у Метрана-100 должно производиться после подачи и сброса избыточного давления, составляющего 8-10% верхнего предела измерений.

Преобразователь Метран-100 выдерживает воздействие односторонней перегрузки рабочим избыточным давлением в равной мере, как со стороны плюсовой, так и минусовой камер. В отдельных случаях односторонняя перегрузка рабочим избыточным давлением нормальных характеристик преобразователя. Для подключения этого необходимо строго соблюдать определенную последовательность операций при включении преобразователя в работу, при продувке рабочих камер и сливе конденсата.

Эксплуатация ТСП-1088

Каждую смену проводят визуальный осмотр термопреобразователей сопротивлений типа ТСП-1088. При этом проверяют, чтобы крышки на головках были плотно закрыты и под крышками были прокладки. Асбестовый шнур для уплотнения выводов проводов должны быть плотно поджаты штуцером. В местах возможной тяги продукта следует предотвратить его попадание на защитную арматуру и головки термопреобразователя. Проверяют наличие и состояние съемочного слоя тепловой изоляции, уменьшающего отвод тепла от чувствительного элемента по защитному чехлу в окружающую среду. В зимнее время на наружных установках нельзя допускать образование ледяных налетов на защитной арматуре и отходящих проводах, так как они смогут привести к повреждению термопреобразователей сопротивлений. Не реже одного раза в месяц осматривают и чистят электрические контакты в головках термопреобразователей сопротивления.

Обслуживание прибора сводится к следующим периодическим операциям: замены диаграммного диска, протирание стекла и крышки прибора, заливки чернил, промывки чернильницы и пера, смазки подшипников и трущихся деталей механизма. Длительная с частым перемещением контакта по реохорду может привести к засорению контактной поверхности реохорда продуктами износа контактов, осадками, поэтому периодически необходимо чистить реохорд щеткой, смоченной в бензине или спирте.

Замена диаграммного диска производится следующим образом: снять указатель, взять за наружную обойму и, нажимая от себя до упора, повернуть указатель против часовой стрелки до выхода из зацепления. Затем снять диаграммный диск, предварительно вынув пружинную шайбу. Заправка чернильницы производится специальными чернилами. При длительной эксплуатации прибора следует периодически проводить чистку и смазку подвижных частей.


11. Экономический расчет

Расчет средств, требуемых для разработки проекта

При разработке научно-технического проекта одним из важных этапов является его технико-экономическое обоснование. Оно позволяет выделить преимущества и недостатки разработки, внедрения и эксплуатации данного программного продукта в разрезе экономической эффективности, социальной значимости и других аспектов.

Целью выполнения данного раздела является расчет затрат на разработку учебно – методического обеспечения дисциплины «Технические средства систем автоматизации».

Организация и планирование работ

Одной из основных целей планирования работ является определение общей продолжительности их проведения. Наиболее удобным, простым и наглядным способом для этих целей является использование линейного графика. Для его построения определим события и составим таблицу 6.

Перечень событий

Таблица 6

Событие Код
Постановка задачи 0
Составление технического задания 1
Подбор и изучение литературы 2
Разработка проекта 3
Формирование информационной базы 4
Набор методического пособия 5
Проверка 6
Анализ результатов 7
Апробация инструментального средства 8
Оформление отчетной документации о проделанной работе 9
Составление пояснительной записки 10
Сдача готового проекта 11

Для организации процесса разработки инструментального средства использован метод сетевого планирования и управления. Метод позволяет графически представить план выполнения предстоящих работ, связанных с разработкой системы, его анализ и оптимизацию, что позволяет упрощать решения поставленных задач, координировать ресурсы времени, рабочие силы и последствия отдельных операций.

Составим перечень работ и соответствие работ своим исполнителям, продолжительность выполнения этих работ и сведем их в таблицу 7.


Трудозатраты на проведение НИР

Таблица 7

Этап Исполнители

Продолжительность

работ, дни

Длительность

работ, чел - дни

tmin tmax tож ТРД ТКД
1 Постановка задачи

Руководитель,

1 2 1,4

Руководитель,

3 4 3,4
Студент 10 15 12 100 12 17
4 Разработка проекта

Руководитель,

25 26 25,4

Руководитель,

28 30 28,8
Студент 10 11 1,4 100 1,4 2
7 Проверка

Руководитель,

3 5 3,8
8Анализ результатов

Руководитель,

2 3 2,4
Студент 5 7 5,8 100 5,8 9
Студент 7 10 8,2 100 8,2 12
Студент 4 5 4,4 100 4,4 7
12 Сдача готового проекта Студент 1 2 1,4 100 1,4 2
ИТОГО

Расчет трудоемкости этапов

Для организации научно-исследовательских работ (НИР) применяются различные методы экономического планирования. Работы, проводящиеся в коллективе с большими людскими затратами, рассчитываются методом сетевого планирования.

Настоящая работа имеет малый штат исполнителей (научный руководитель и инженер-программист) и проводится с малыми затратами, поэтому целесообразно применить систему линейного планирования с построением линейного графика.

Для расчета продолжительности выполнения работ будем использовать вероятный метод.

В настоящее время для определения ожидаемого значения продолжительности работ tож применяют вариант основанный на использовании двух оценок tmax и tmin.

где tmin – минимальная трудоемкость, чел/дн.;

tmax – максимальная трудоемкость, чел/дн..

Сроки tmin и tmax устанавливает руководитель.

Для выполнения перечисленных работ потребуются следующие специалисты -

а) инженер программист (ИП);

б) научный руководитель (НР).

На основе таблицы 7 построим диаграмму занятости рисунок 2 и линейный график выполнения работ исполнителями рисунок 2.


Рис. 2 - Процент занятости

Для построения линейного графика необходимо перевести длительность работ в календарные дни. Расчет ведется по формуле:

где ТК - коэффициент календарности.

(1)

где ТКАЛ - календарные дни, ТКД=365;

ТВД - выходные дни, ТВД=104;

ТПД - праздничные дни, ТПД=10.

В выполнении работы действуют научный руководитель и инженер.

Подставляя численные значения в формулу (1) находим .

Расчет нарастания технической готовности работ

Величина нарастания технической готовности работы показывает, на сколько процентов выполнена работа

где tн - нарастающая продолжительность выполнения работ с момента начала разработки темы, дни;

tо- общая продолжительность, которая вычисляется по формуле.

Для определения удельного веса каждого этапа воспользуемся формулой

где tОЖi - ожидаемая продолжительность i-го этапа, календарные дни;

tО - общая продолжительность, календарные дни.


Этапы ТКД, дни УВi, % Гi, % Март Апрель Май Июнь
1 Постановка задачи 3 0,89 1,91
2 Составление технического задания 6 2,16 5,73
3 Подбор и изучение литературы 17 7,64 16,56
4 Разработка проекта 43 16,17 43,94
5 Формирование информационной базы 46 18,34 73,24
6 Набор методического пособия 2 0,89 74,52
7 Проверка 6 2,42 78,34
8Анализ результатов 4 1,52 80,86
9 Апробация инструментального средства 9 3,69 86,96
10 Оформление отчетной документации о проделанной работе 12 5,22 94,26
11 Составление пояснительной записки 7 2,80 98,72
12 Сдача готового проекта 2 0,89 100

Научный руководитель Студент

Рис. 3 - График занятости студента и преподвателя

Расчет затрат на разработку и внедрение

Планирование и учет себестоимости проекта осуществляется по калькуляционным статьям и экономическим элементам. Классификация по статьям калькуляции позволяет определить себестоимость отдельной работы.

Исходными данными для расчета затрат является план работ и перечень требуемой аппаратуры, оборудования и материалов.

Затраты на проект рассчитываются по следующим статьям расходов:

1. Заработная плата.

2. Начисления на зарплату (в пенсионный фонд, социальное страхование, медицинское страхование).

3. Расходы на материалы и комплектующие изделия.

4. Амортизационные расходы.

5. Затраты на электроэнергию.

6. Прочие расходы.

7. Общая себестоимость.

Расчет заработной платы

В этой статье расходов планируется и учитывается основная заработная плата инженерно-технических работников, непосредственно участвующих в разработке, доплаты по районным коэффициентам и премиям.

где n - количество участников в i-ой работе;

Ti - затраты труда, необходимые для выполнения i-го вида работ, (дни);

Сзпi - среднедневная заработная плата работника, выполняющего i-ый вид работ, (руб/дней).

Среднедневная заработная плата определяется по формуле:

где D - месячный должностной оклад работника, определяется как D=З*Ктар;

З - минимальная заработная плата;

Ктар - коэффициент по тарифной сетке;

Мр - количество месяцев работы без отпуска в течение года (при отпуске 24 днях

Мр=11.2, при отпуске 56 дней Мр=10.4;

K - коэффициент, учитывающий коэффициент по премиям Кпр=40%, районный коэффициент Крк=30% (K = Кпр + Крк = 1 + 0,4 + 0,3= 1,7);

F0 - действительный годовой фонд рабочего времени работника, (дни).

Минимальная заработная плата на время разработки составила 1200 рублей.

Тогда среднемесячная заработная плата руководителя, имеющего по тарифной сетке тринадцатый разряд, составляет

D1= 1200 * 3,36 =4032,0 рублей

Среднемесячная заработная плата инженера одиннадцатого разряда, состовляет

D2= 1200 * 2,68=3216,0 рублей.

Результаты расчета действительного годового фонда занесены в таблицу 8.


Таблица 8 - Действительный годовой фонд рабочего времени работников

С учетом того, что F01 = 247 и F02=229 дня, среднедневные зарплаты будут составлять-

а) научный руководитель - Сзп1= (4032,0* 1,7 * 11,2) / 229 = 335,24 рублей;

б) инженер-программист - Сзп2= (3216,0* 1,7 * 10,4) / 247 = 230,20 рублей.

Учитывая то, что научный руководитель был занят при разработке 11 дня, а инженер-программист 97 дней, найдем основную заработную плату и сведем в таблицу 9.

Таблица 9 - Основная заработная плата работников

Участники разработки Сзпi , руб ti , дни Cоснз/п, руб
НР 411 11 3687,64
ИП 250,20 97 22329,4
Итого 27309,04

Соснз/п= 11 * 335,24 + 97 * 230,2 = 27309,04 руб.

Расчет отчислений от заработной платы

Здесь рассчитывается отчисления во вне бюджетные социальные фонды.

Отчисления от заработной платы определяются по следующей формуле:


Ссоцф =Ксоцф * Сосн

где Ксоцф- коэффициент, учитывающий размер отчислений из зар. платы.

Коэффициент включает в себя затраты по этой статье складывающиеся из отчислений на социальные нужды (26% от суммы общей зарплаты).

Сумма отчислений составит 6764,43 рублей.

Расчет затрат на материалы и комплектующие

Отражает стоимость материалов с учетом транспортно-заготовительных расходов (1% от стоимости материалов), используемых при разработке программного инструментального средства. Сведем затраты на материалы и комплектующие в таблицу 10

Таблица 10 - Расходные материалы

Наименование материалов Цена ед., руб Количество Сумма, руб
Диск CD/RW 45,0 2 шт 90,0
Печатная бумага 175,0 2 пач 350,0
Картридж для принтера 450,0 1 шт 450,0
Канцелярские товары 200,0 200,0
Программный продукт 500 1 шт 500,0
Итого 1590,0

Согласно таблице 10 расход на материалы составляет:

Смат =90,0+350,0+450,0+200,0+500,0=1590,0 руб.

Расчет амортизационных расходов

В статье амортизационные отчисления от используемого оборудования рассчитывается амортизация за время выполнения работы для оборудования, которое имеется в наличии.

Амортизационные отчисления рассчитываются на время использования ПЭВМ по формуле:

С А = ,

где На - годовая норма амортизации, На = 25% = 0,25;

Цоб - цена оборудования, Цоб = 45000 руб.;

FД - действительный годовой фонд рабочего времени, FД=1976 часа;

tрм - время работы ВТ при создании программного продукта, tрм = 157 дня или 1256 часов;

n – число задействованных ПЭВМ, n=1.

СА = (0,25 * 45 000 * 1256) / 1976 =7150,80 рублей.

Таблица 11 - Специальное оборудование

Наименование Количество Цоб, руб На, % FД, час СА, руб
Компьютер 1 шт. 30000 25 1976 4767,20
Принтер 1 шт. 15000 25 1976 2383,60
Итого: 7150,80

Затраты на электроэнергию

Количество необходимой электроэнергии определяется по следующей формуле:

Э = Р * Цэн * Fисп, (2)

где Р – потребляемая мощность, кВт;

Цэн – тарифная цена на промышленную электроэнергию, руб./кВт∙час;

Fисп – планируемое время использования оборудования, час.

Э =0,35 * 1,89 * 1976=1307,12руб.

Стоимостные оценки потребностей в материально-технических ресурсах определяются с учетом оптовых цен и тарифов на энергоносители путем их прямого пересчета.

Тарифы на энергоносители в каждом из регионов России устанавливаются и пересматриваются решениями органов исполнительной власти в порядке, установленном для естественных монополий.

Расчет прочих расходов

В статье «прочие расходы» отражены расходы на разработку инструментального средства, к ним можно отнести почтовые, телеграфные расходы, рекламу, т.е. все те расходы, которые не учтены в предыдущих статьях.

Прочие расходы составляют 5-20% от единовременных затрат на выполнение программного продукта и проводятся по формуле:

Спр = (Сз/п + Смат + Ссоцф + Са + Сэ) * 0,05,

Спр = (26017,04+1590,0+6764,43+7150,80+1307.12)*0,05= 42829,39 руб.

Себестоимость проекта

Себестоимость проекта определяется суммой статей 1-5 таблица 12.

Таблица 12 - Смета затрат

№ п\п Наименование статьи Затраты, руб Примечание
1 Заработная плата 26017,04 Таблица 6.5
2 Начисления на зарплату 6764,43 26% от ст.1
3 Расходы на материалы 1590,0 Таблица 6.6
4 Амортизационные расходы 7150,80 Таблица 6.7
5 Затраты на электроэнергию 1307,12 Формула (2)
6 Прочие расходы 2102,57 5% сумма ст.1-5
7 Итого 44931,96

Оценка эффективности проекта

Важнейшим результатом проведения НИР является его научно-технический уровень, который характеризует, в какой мере выполнены работы и обеспечивается ли научно-технический прогресс в данной области.

Оценка научно-технического уровня

На основе оценок новизны результатов, их ценности, масштабам реализации определяется показатель научно-технического уровня по формуле

,

где Кi - весовой коэффициент i - го признака научно-технического эффекта;

ni - количественная оценка i - го признака научно-технического уровня работы.

Таблица 13 - Признаки научно-технического эффекта

Количественная оценка уровня новизны НИР определяется на основе значения баллов по таблице 14.


Таблица 14 - Количественная оценка уровня новизны НИР

Уровень новизны

Разработки

Баллы
Принципиально новая Результаты исследований открывают новое направление в данной области науки и техники 8 - 10
Новая По-новому или впервые объяснены известные факты, закономерности 5 - 7
Относительно новая Результаты исследований систематизируют и обобщают имеющиеся сведения, определяют пути дальнейших исследований 2 - 4
Продолжение таблицы 14

Уровень новизны

Разработки

Характеристика уровня новизны Баллы

Уровень новизны

Разработки

Характеристика уровня новизны Баллы
Традиционная Работа выполнена по традиционной методике, результаты которой носят информационный характер 1
Не обладающая новизной Получен результат, который ранее был известен 0

Теоретический уровень полученных результатов НИР определяется на основе значения баллов, приведенных в таблице 15.

Таблица 15 - Количественная оценка теоретического уровня НИР

Теоретический уровень полученных результатов Баллы
Установление закона; разработка новой теории 10
Глубокая разработка проблемы: многоаспектный анализ связей, взаимозависимости между фактами с наличием объяснения 8
6
Элементарный анализ связей между фактами с наличием гипотезы, симплексного прогноза, классификации, объясняющей версии или практических рекомендаций частного характера 2
Описание отдельных элементарных фактов (вещей, свойств и отношений); изложение опыта, наблюдений, результатов измерений 0,5

Возможность реализации научных результатов определяется на основе значения баллов по таблице 16.


Таблица 16 - Возможность реализации научных результатов

Примечание: баллы по времени и масштабам складываются.

Результаты оценок признаков отображены в таблице 17.

Таблица 17 - Количественная оценка признаков НИР

Признак научно-технического эффекта НИР

Характеристика

признака НИР

Кi Пi
1 Уровень новизны систематизируют и обобщают сведения, определяют пути дальнейших исследований 0,6 1
2 Теоретический уровень Разработка способа (алгоритм, программа мероприятий, устройство, вещество и т.п.) 0,4 6
3 Возможность реализации Время реализации в течение первых лет 0,2 10
Масштабы реализации - предприятие 2

Используя исходные данные по основным признакам научно-технической эффективности НИР, определяем показатель научно-технического уровня:

Нт= 0,6·1+0,4·6+0,2·(10+2)=5,4

Таблица 18 - Оценка уровня научно-технического эффекта

В соответствии с таблицей 18, уровень научно-технического эффекта настоящей работы - средний.

Рассчитана смета затрат на разработку данной системы и смета затрат на ее годовую эксплуатацию. Затраты на создание системы составляют 44931,96 рублей.

Расчет средств, требуемых для внедрения

Капитальные вложения в модернизацию – это в первую очередь, стоимость электрооборудования и стоимость монтажных работ.

Смета – это документ, определяющий окончательную и предельную стоимость реализации проекта. Смета служит исходным документом капитального вложения, в котором определяются затраты, необходимые для выполнения полного объема необходимых работ.

Исходными материалами для определения сметной стоимости усовершенствования объекта служат данные проекта по составу оборудования, объему строительных и монтажных работ; прейскуранты цен на оборудование и строительные материалы; нормы и расценки на строительные и монтажные работы; тарифы на перевозку грузов; нормы накладных расходов и другие нормативные документы.

Расчет произведен на основе договорных цен. Исходные данные и стоимости сведены в таблицы.

После утверждения технического проекта разрабатывается рабочий проект, то есть рабочие чертежи, на основании которых определяется окончательная стоимость.


Затраты на оборудование

Таблица 4

№ п/п Наименование прибора Кол-во

Стоимость

Итого
1 Метран-100 23 15000 р. 345000 р.
2 БПС-90П/К 23 14000 р. 322000 р.
3 РС-29 10 5000 р. 50000 р.
4 У29.3М 10 6000 р. 60000 р.
5 Siemens SIPART 10 10000 р. 100000 р.
6 РМТ-69 5 50000 р. 500000 р.
7 Другое(кабеля, разъемы, шлейфы, транспортные расходы) 50000 р. 50000 р.
итого 81 1427000 р.

Фонд оплаты труда

Определим количество лиц, требуемых для работ, и сведем эту информацию в таблицу:


Работники, задействуемые в модернизации и их зарплата.

Таблица 5

Должность Зарплата за месяц Кол-во месяцев Зарплата работника за все время работы
Гл.инженер 30000 1 30000
Главный метролог 30000 2 60000
Зам.гл.метролога 25000 2 50000
Начальник участка 15000 4 60000
Слесарь КИПиА 10000 1 10000
Слесарь КИПиА 10000 1 10000
Слесарь КИПиА 10000 1 10000
Слесарь КИПиА 10000 1 10000
Электрик 10000 1 10000
Слесарь 10000 1 10000
Оператор (аппаратчик) 10000 1 10000
Премия 30% 81000
итого 351000

Стоимость монтажных работ и заработная плата людям, которые проводили все расчеты, т.е. инженерно-техническим работникам составила 351000 рублей.

На примере одного прибора – Метран-100 показано количество трудозатрат. В расчет принимаем, что на том месте, где он должен стоять, находится другой датчик, который необходимо модернизировать.

В этот расчет не вошло время, которое нужно на доставку сварочного оборудования, подготовку к работе и т.д.


Количество трудозатрат для Метрана-100

Таблица 6

№ п/п Наименование действия Кол-во минут
1 Демонтаж проводов, отсоединение импульсов, откручивание прибора 30
2 Протяжка кабеля, в том числе через клемную коробку 120
3 Переваривание крепежей, подгонка размеров 60
4 Монтаж проводов, присоединение импульсов, прикручивание прибора 30
5 Нанесение обозначений 30
Итого 270 минут или 4,5 часа

В следующей таблице показаны трудозатраты на некоторые виды работ.

Трудозатраты на некоторые приборы

Таблица 7

Наименование работы Перечень требуемых действий кол-во человек для одной операции Количество человеко-часов
Монтаж ДКС разборка, замена, сборка, затяжка 2 2
Монтаж Метрана-100 Демонтаж предыдущего прибора, подгонка соединительных импульсов, присоединение переходников, 2 4,5
Монтаж БПС90 Подготовка места расположения, подсоединение проводов, настройка 1 3
Монтаж волнового уровнемера Демонтаж старого уровнемера, монтаж нового места расположения с помощью сварочного оборудования, присоединение нового прибора, присоединение проводов, настройка. 2 5
Монтаж позиционера Siemens Демонтаж старого позиционера, присоединение нового, настройка 1 5

Видно, что очень большое время уходит на монтаж импортных приборов. Это происходит из-за того, что приборы новые и опыта работы с ними нет. На самом деле на монтаж уйдет значительно больше времени ввиду непредвиденных обстоятельств, нехватки опыта, других обстоятельств.

Процесс проектирования занимает намного больше времени, чем монтаж, ввиду того, что необходимо продумать каждую мелочь, ведь котельная установка – очень важное звено в работе производства мономеров. Именно поэтому проектирование занимает большую часть времени. Все работы разделены на части и сведены в таблице.

План выполнения работ

Таблица 8

Перечень выполняемых работ Исполнители Кол-во человек Количество дней
Ознакомление с техническим заданием, разработка плана действий, распределение работы Инженер, главный метролог, зам.гл.метролога 3 14 дней
Разработка схемы, технико-экономический расчет схемы, заказ материалов и деталей Инженер, главный метролог, зам.гл.метролога, нач.участка 4 14 дней
Подготовка места работы, организационные работы Зам.гл.метролога, нач.участка, слесарь КИПиА 5 14 дней
После остановки котла в кап.ремонт начинаются основные работы
Демонтаж старого оборудования Слесарь КИПиА, электромонтер 5 7 дней
Установка оборудования (параллельно на всех участках) Слесарь КИПиА, электромонтер 5 20 дней
Проверка работы оборудования, срабатывание уставок. Слесарь КИПиА, электромонтер 5 2 дня
Сдача готовой схемы, обкатка с имитацией рабочих ситуаций Гл.инженер, нач.участка, аппаратчик, слесарь КИПиА, 11 1 день
Пуск котельной установки аппаратчик, слесарь КИПиА, электрик 7 1 день
Устранение мелких недочетов Слесарь КИПиА, электромонтер 5 1 день

Итого затраты на переоборудование котельной установки: фонд заработной платы 351000 р + затраты на покупку оборудования 1427000 рублей = 1778000 рублей.

Экономический эффект от внедрения

Внедрение АСУ ТП подобного рода, как показывает мировая практика, приводит к экономии сжигаемого топлива на 1-7%.

1. При расходе природного газа 500 м3/час на одном работающем котле эта экономия может составить 5-35 м3/час или 43800-306600 м3/год. При цене 2500 рублей за 1000 м3 экономический эффект будет от 40 646 рублей в год. Но так как газ постоянно дорожает, эта сумма увеличится.

2. Так же экономия происходит на сокращении затрат на транспортную железнодорожную доставку. Если в среднем брать экономию 150000 м 3 /год, а вместительность цистерны 20000 м 3 ,то экономится перевоз почти 8 цистерн. Стоимость солярки для тепловоза, амортизация, зарплата машинистам и др. составляет около 1000 рублей на 100 километров за 1 цистерну. Газодобывающая станция находится на расстоянии 200 км, следовательно затраты составят около 20000 рублей. Но с учетом стоимости топлива эти затраты через год могут существенно увеличиться.

Т.е. чистая окупаемость произойдет за 20 лет. С учетом удорожания топлива и повышением зарплат этот срок может снизиться до 5 лет.

Но при остановке завода или даже разрушении от отказавшего старого оборудования убытки могут составить миллионы рублей.


12. Безопасность и экологичность работы

Анализ вредных и опасных факторов

Производство мономеров, в состав которого входит установка ректификации ароматических углеводородов, связано с применением и переработкой больших количеств легковоспламеняющихся веществ в сжиженном и газообразном состоянии. Эти продукты могут образовывать с воздухом взрывоопасные смеси. Особую опасность представляют низкие места, колодцы, приямки, где возможно скапливание взрывоопасных смесей углеводородов с воздухом, так как пары углеводородов в основном тяжелее воздуха.

Наиболее опасными являются такие места, которые считаются труднодоступными для контроля путем внешнего осмотра, где может быть повышенная загазованность, и которые по характеру работы аппаратчик посещает не часто

Особо опасными факторами при эксплуатации данного узла являются:

Высокое давление и температура при эксплуатации оборудования установки получения пара высокого давления;

Образование взрывоопасных концентраций природного газа (метана) при розжиге и эксплуатации котла;

Возможность получения химических ожогов и отравлений при приготовлении раствора гидразин-гидрата и аммиачной воды.

Наиболее опасные места.

1. Система разводки топливного газа.

2. Паропроводы высокого и среднего давления.

3. Узлы редуцирования пара.

4. Отделение приготовления реагентов.

5. Колодцы, люки, низкие места, приямки, где возможно скопление взрывоопасных смесей углеводородов с воздухом.

Технологический процесс выработки перегретого пара высокого давления связан с наличием взрывоопасного топливного газа, продуктов горения топливного газа, а также высокого давления и высоких температур пара и воды. Кроме того для обработки воды применяются такие токсичные вещества, как гидразин-гидрат, аммиак, тринатрий фосфат.

Основными условиями безопасного ведения процесса получения пара и выработки электроэнергии являются:

Соблюдение норм технологического режима;

Соблюдение требований инструкции по рабочему месту, правил ОТиПБ при работе, пуске и остановке отдельных единиц оборудования и всей котельной;

Проведение своевременных и качественных ремонтов оборудования;

Проведение, согласно графикам, контрольных проверок контрольно-измерительных приборов и автоматики, систем сигнализации и блокировок, предохранительных устройств.

Во время работы вспомогательной котельной оборудование и коммуникации находятся под давлением горючих газов, воды и водяного пара. Поэтому при нарушении нормального технологического режима, а также при нарушениях плотностей в соединениях аппаратов и узлов могут иметь место:

Прорыв газа с последующим загоранием и взрывом;

Образование местных взрывоопасных концентраций природного газа;

Отравления в результате наличия газов, содержащих компоненты (СН 4 , NO 2 , СО 2 , СО);

Отравление реагентами коррекционной обработки питательной и котловой воды, при несоблюдении правил обращения с ними и пренебрежением средствами индивидуальной защиты;

Термические ожоги при прорывах трубопроводов дымовых газов, водяного пара и конденсата;

Поражение электрическим током при неисправностях электрооборудования и электрических сетей, а также в результате несоблюдения правил электробезопасности;

Механические травмы при нарушениях в обслуживании машин, меха­низмов и другого оборудования;

Загорание смазочных и уплотнительных масел и обтирочных материалов при несоблюдении правил хранения их и нарушении противопожарных норм;

Неудовлетворительная продувка трубопроводов и аппаратов, что может вызвать образование взрывоопасных концентраций и при определенных условиях взрыв;

Опасности, связанные с эксплуатацией оборудования, работающего под высоким давлением, выполнением работ в приямках, колодцах, сосудах и при обращении с вредными веществами (аммиак, гидразин-гидрат).

Производственная санитария

Микроклимат. Для нормальной и высокопроизводительной работы в производственных помещениях необходимо, чтобы метеорологические условия (температура, влажность и скорость движения воздуха), т.е. микроклимат, находились в определенных соотношениях.

Требуемое состояние воздуха рабочей зоны обеспечено выполнением определенных мероприятий, в том числе:

Механизацией и автоматизацией производственных процессов и дистанционным управлением ими;

Применением технологических процессов и оборудования, исключающих образование вредных веществ или попадание их в рабочую зону;

Надежной герметизацией оборудования, в котором находятся вредные вещества;

Защитой от источников тепловых излучений;

Устройством вентиляции и отопления;

Применением средств индивидуальной защиты.

Температура воздуха в лабораториях колеблется от 20 до 25 градусов.

Освещение: освещение в помещениях соответствуют нормам. Все объекты, с которыми приходится часто работать хорошо освещены. В главном зале находится достаточное количество оконных проемов, которое необходимо днем. У работников, которым приходится иметь дело с работой в темных местах (электрики, слесаря КИП) имеются специальные фонари – шахтерки, которые обеспечивают достаточное освещение любой детали.

Шум и вибрации. Основными мерами борьбы с шумом являются:

Устранение или ослабление причин шума в самом его источнике;

Изоляция источника шума от окружающей среды средствами звукоизоляции и звукопоглощения;

Защита от действия ультразвука выполнена следующими способами:

Использование в оборудовании более высоких рабочих частот, для которых допустимые уровни звукового давления выше;

Использование источников ультразвукового излучения в звукоизолирующем исполнении типа кожухов. Такие кожухи изготовлены из листовой стали или дюралюминия (толщиной 1 мм) с оклейкой резиной или рубероидом, а также из гетинакса (толщиной 5 мм). Применение кожухов дает снижение уровня ультразвука на 60…80 дБ;

Экранирование;

В основном цехе уровень шума достигает 100 дБ. При работе, рабочие используют беруши или просто затыкают уши пальцамиJ.

Техника безопасности

Рабочий, допущенный к эксплуатации котельной, должен быть обучен специальной программе и сдать экзамен квалификационной комиссии. Перед допуском к работе каждый поступающий в цех должен быть ознакомлен с начальником цеха или его заместителем по техники безопасности, с общими правилами ведения работ, после чего мастер проводит инструктаж поступающего, на рабочем месте.

При этом рабочий должен быть ознакомлен с особенностями работы на данном рабочем месте, с оборудованием и инструментом. После инструктажа на рабочем месте рабочий допускается к стажировке и обучению на рабочем месте под руководством опытного рабочего, о чем издается приказ по цеху. К самостоятельной работе рабочий должен быть допущен только после окончания срока стажировки, установленного для данного рабочего места и после проверки знаний комиссией назначенной распоряжением по цеху. Рабочий обязан твердо знать опасные моменты своего рабочего места и методы устранения их.

Лица, принимаемые на работу по обслуживанию тепломеханического оборудования, должны пройти предварительный медицинский осмотр и в дальнейшем проходить его периодически в сроки, установленные для персонала энергопредприятия.

Лица, обслуживающие оборудование цехов электростанций и тепловых сетей должны знать и выполнять правила техники безопасности, применительно к занимаемой должности. персонал, использующий в своей работе электрозащитные средства, обязан знать и выполнять правила применения и испытания средств защиты, используемые в электроустановках. Весь персонал должен быть обеспечен по действующим нормам спецодеждой, спецобувью и другими средствами защиты в соответствии с характеристикой выполняемых работ и обязан пользоваться ими во время работы. Весь производственный персонал должен быть практически обучен приемам освобождения человека попавшего под напряжение, от действия электрического тока и оказания ему доврачебной помощи, а также приемам оказания доврачебной помощи пострадавшим при других несчастных случаях. Каждый работник должен четко знать и выполнять требования правил пожарной безопасности и противоаварийного режима на объекте, не допускать действий, которые могут привести к пожару или загоранию.

Запрещается курение на территории установки, за исключением установленных мест для курения, оборудованных специальным противопожарным инвентарем

При эксплуатации котлов должны быть обеспечены надежность безопасность работы всего основного и вспомогательного оборудования; возможность достижения номинальной производительности котлов, параметров и качества воды, экономичный режим работы. Запрещаются работы на технологическом оборудовании, если трубопровод, к которому подключены импульсные линии, остается под давлением. Отсутствие давления в отключенной импульсной линии должно проверяться соединением ее с атмосферой. Запрещаются работы на действующем электрооборудовании без применения электрозащитных средств. При работе без применения средств электрозащиты электрооборудование должно быть отключено.

Безопасность в чрезвычайных ситуациях.

Наиболее вероятная ЧС в помещении котельной пожар, ввиду больших температур, применением газа и большим количеством электрического оборудования.

Ответственным лицом за пожарную безопасность котельной является мастер, который обязан следить за выполнением требований пожарной безопасности. Все производственные участки обеспечены противопожарным инвентарем и первичными средствами пожаротушения.

Для предотвращения случаев ЧС в помещении котельной запрещается:

1. хранить легковоспламеняющиеся и горючие вещества;

2. загромождать проходы между котлами, тамбурами и подступы к противопожарному инвентарю;

3. производить растопку котлов без вентиляции топок и газоходов, а также применять для розжига жидкое горючее;

4. производить проверку герметичности газопроводов открытым огнем;

5. пользоваться неисправными приборами и электросетью;

6. применять средства пожаротушения в других целях.

При пожаре обслуживающий персонал обязан:

1. Немедленно вызвать пожарную охрану по телефону.

2. приступить к тушению пожара имеющимися средствами пожаротушения, не прекращая наблюдения за котлами.

Мероприятия по охране окружающей среды

Охрана окружающей среды – глобальная проблема. Мероприятия по охране окружающей среды направлены на сохранение, восстановление природных богатств, рациональное использование природных ресурсов и предупреждение вредного влияния результатов хозяйственной деятельности общества на природу и здоровье человека. Сущность охраны окружающей среды состоит в установлении постоянной динамической гармонии между развивающимся обществом и природой, служащей ему одновременно и сферой и источником жизни. Ежедневно выбрасываются миллионы тонн различных газообразных отходов, водоемы загрязняются миллиардами кубометров сточных вод. При решении задачи снижения загрязнения окружающей среды главным является создание и внедрение принципиально новых, безотходных технологических процессов.

В котельной образующиеся при сгорании продукты передают часть тепла рабочему телу, а другая его часть вместе с продуктами сгорания (CO2, CO, O2, NO) выбрасывается в атмосферу. В атмосфере газообразные продукты сгорания в результате вторичных химических реакций с участием кислорода и паров воды образуют кислоты, а также различные соли. Загрязняющие атмосферу вещества вместе с осадками выпадают на поверхность почвы и водоемов, вызывая их химическое загрязнение. Для уменьшения выброса вредных веществ и загрязнения окружающей среды, устанавливают в котельных герметизированное технологическое оборудование, газо- и пылеулавливающие установки, высокие трубы.

Автоматизация котельной обеспечивает экономное использование топлива, а также полноту его сжигания. В проекте контролируется содержание O2 в дымовых газах и регулируется расход воздуха с коррекцией по содержанию кислорода в дымовых газах, что позволяет обеспечить полноту сжигания топлива.


Заключение

В данной дипломной работе были рассмотрены вопросы автоматизации котельной установки производства мономеров.

Так как все оборудование морально и физически устарело актуальность данного вопроса очень высока.

В ходе этой работы были рассмотрены приборы импортного и отечественного производства. Выявлено, что некоторые отечественные приборы занимают достойное место на рынке приборов автоматики и электроники. Так как стоимость отечественных приборов намного ниже импортных аналогов, а надежность, функциональность и другие параметры такие же, то предпочтение было отдано именно им. Исключением являются лишь позиционеры фирмы Siemens и позиционеры Rosemount.

Каждая модернизация должна быть экономически обоснованной, поэтому был проведен экономический расчет стоимости всей модернизации. Общая стоимость составила 1778000 рублей. Для производства мономеров, да и для всего предприятия в целом это большие деньги, но ущерб от внезапного отказа оборудования может быть намного выше.

В конце дипломной работы в части «Требования по охране труда» были выведены основные мероприятия и требования, которые должны выполняться для безопасного выполнения работ.


Conclusion

The possibility of automation of boiler plant for monometer producing was reviewed in this qualified paper.

Since all the equipment morally and physically became out of date the importance of this issue is very high.

In the course of this paper the import and domestic producing devices were reviewed. During this reviewing it was clear up that some domestic devices take the worth place in the market of automation and electronics devices. As the price of domestic devices much lower than import counterpart and reliability, functionality and other parameters are the same, so the preference was given to them. The exclusions were the positioners of Siemens and the gages of Rosemount.

Every enhancement should be economically proved, that is why economical calculation of the price of all enhancements was carried. The total cost is 1778000 rubles. For producing monometers and for the whole enterprise it’s big money, but the loss from the unexpected breakdown of equipment can be much higher.

At the end of the qualified paper in the part «Protection of labour request» the main actions and requirements were introduced, which should be followed for the safe work.


Литература

1. Адабашьян А.И. Монтаж контрольно-измерительных приборов и аппаратуры автоматического регулирования. М.: Стройиздат. 1969. 358 с.

2. Герасимов С.Г. Автоматическое регулирование котельных установок. М.: Госэнергоиздат, 1950, 424 с.

3. Голубятников В.А., Шувалов В.В. Автоматизация производственных процессов и АСУП в химической промышленности. М.Химия, 1978. 376 с.

4. Ицкович А.М. Котельные установки. М.: Нашиц, 1958, 226 с.

5. Казьмин П.М. Монтаж, наладка и эксплуатация автоматических устройств химических производств. М.: Химия, 1979, 296 с.

6. Ктоев А.С. Проектирование систем автоматизации технологических процессов. Справочное пособие. М.: Энергоиздат, 1990, 464 с.

7. Купалов М.В. Технические измерения и приборы для химических производств. М.: Машиностроение, 1966.

8. Лохматов В.М. Автоматизация промышленных котельных. Л.: Энергия, 1970, 208 с.

9. Монтаж средств измерений и автоматизации. Под ред. Ктоева А.С. М.: Энергоиздат, 1988, 488 с.

10. Мурин Т.А. Теплотехнические измерения. М.: Энергия, 1979. 423 с.

11. Мухин В.С., Саков И.А. Приборы контроля и средства автоматизации тепловых процессов. М.: Высшая школа. 1988, 266 с.

12. Павлов И.Ф., Романков П.П., Носков А.А. Примеры и задачи по курсу процессов иаппаратов химических технологий. М.: Химия, 1976.

13. Приборы и средства автоматизации. Каталог. М.: Информприбор, 1995, 140 с.

14. приборы и средства автоматизации. Номенклатурный перечень. М.: Информприбор, 1995, 100 с.

15. Путилов А.В., Коплеев А.А., Петрухин Н.В. Охрана окружающей среды. М.: Химия, 1991, 224 с.

16. Раппопорт Б.М., Седанов Л.А., Ярхо Г.С., Рудинцев Г.И. Устройства автоматического регулирования и защиты котельных горных предприятий. М.: недра, 1974, 205 с.

17. Столлкер Е.Б. Справочник эксплуатации газовых котельных. Л.:Недра, 1976. 528 с.

18. Фейерштейн В.С. Справочник по автоматизации котельных. М.: Энергия, 1972, 360 с.

19. Фаников В.С. , Витальев В.П. Автоматизация тепловых пунктов. Справочное пособие. М.: Энергоиздат, 1989. 256 с.

20. Шевцов Е.К. Справочник по поверке и наладке приборов. Л.: Техника, 1981, 205 с.



... ± 0,035 В. погрешность определения объемного расхода топлива не превышает 60·10-6м3/с. Таким образом применение разработанного способа измерения расхода топлива значительно повышает качество управления по контуру «Расход твердого топлива», что позволяет сэкономить энергоноситель и повышает КПД котельных установок Список литературы Батицкий И.А. и др. Автоматизация производственных процессов и АСУ

Аннотация

Целью выполнения данного курсового проекта является приобретение практических навыков анализа технологического процесса, выбор средств автоматического контроля, расчета измерительных схем приборов и средств контроля, а также обучение студента самостоятельности при решении инженерно-технических задач построения схем автоматического контроля различных технологических параметров.


Введение

Автоматизация – это применение комплекса средств, позволяющих осуществлять производственные процессы без непосредственного участия человека, но под его контролем. Автоматизация производственных процессов приводит к увеличению выпуска, снижению себестоимости и улучшению качества продукции, уменьшает численность обслуживающего персонала, повышает надежность и долговечность машин, дает экономию материалов, улучшает условия труда и техники безопасности.

Автоматизация освобождает человека от необходимости непосредственного управления механизмами. В автоматизированном процессе производства роль человека сводится к наладке, регулировке, обслуживании средств автоматизации и наблюдению за их действием. Если автоматизация облегчает физический труд человека, то автоматизация имеет цель облегчить так же и умственный труд. Эксплуатация средств автоматизации требует от обслуживающего персонала высокой техники квалификации.

По уровню автоматизации теплоэнергетика занимает одно из ведущих мест среди других отраслей промышленности. Теплоэнергетические установки характеризуются непрерывностью протекающих в них процессов. При этом выработка тепловой и электрической энергии в любой момент времени должна соответствовать потреблению (нагрузке). Почти все операции на теплоэнергетических установках механизированы, а переходные процессы в них развиваются сравнительно быстро. Этим объясняется высокое развитие автоматизации в тепловой энергетике.

Автоматизация параметров дает значительные преимущества:

1) обеспечивает уменьшение численности рабочего персонала, т.е. повышение производительности его труда,

2) приводит к изменению характера труда обслуживающего персонала,

3) увеличивает точность поддержания параметров вырабатываемого пара,

4) повышает безопасность труда и надежность работы оборудования,

5) увеличивает экономичность работы парогенератора.

Автоматизация парогенераторов включает в себя автоматическое регулирование, дистанционное управление, технологическую защиту, теплотехнический контроль, технологические блокировки и сигнализацию.

Автоматическое регулирование обеспечивает ход непрерывно протекающих процессов в парогенераторе (питание водой, горение, перегрев пара и др.)

Дистанционное управление позволяет дежурному персоналу пускать и останавливать парогенераторную установку, а так же переключать и регулировать ее механизмы на расстоянии, с пульта, где сосредоточены устройства управления.

Теплотехнический контроль за работой парогенератора и оборудования осуществляется с помощью показывающих и самопишущих приборов, действующих автоматически. Приборы ведут непрерывный контроль процессов, протекающих в парогенераторной установке, или же подключаются к объекту измерения обслуживающим персоналом или информационно-вычислительной машиной. Приборы теплотехнического контроля размещают на панелях, щитах управления по возможности удобно для наблюдения и обслуживания.

Технологические блокировки выполняют в заданной последовательности ряд операций при пусках и остановках механизмов парогенераторной установки, а так же в случаях срабатывания технологической защиты. Блокировки исключают неправильные операции при обслуживании парогенераторной установки, обеспечивают отключение в необходимой последовательности оборудования при возникновении аварии.

Устройства технологической сигнализации информируют дежурный персонал о состоянии оборудования (в работе, остановлено и т.п.), предупреждают о приближении параметра к опасному значению, сообщают о возникновении аварийного состояния парогенератора и его оборудования. Применяются звуковая и световая сигнализация.

Эксплуатация котлов должна обеспечивать надежную и эффективную выработку пара требуемых параметров и безопасные условия труда персонала. Для выполнения этих требований эксплуатация должна вестись в точном соответствии с законоположениями, правилами, нормами и руководящими указаниями, в частности, в соответствии с «Правилами устройства и безопасной эксплуатации паровых котлов» Госгортехнадзора, «Правилами технической эксплуатации электрических станций и сетей», «Правилами технической эксплуатации теплоиспользующих установок и тепловых сетей» .


1. Описание технологического процесса

Паровым котлом называется комплекс агрегатов, предназначенных для получения водяного пара. Этот комплекс состоит из ряда теплообменных устройств, связанных между собой и служащих для передачи тепла от продуктов сгорания топлива к воде и пару. Исходным носителем энергии, наличие которого необходимо для образования пар из воды, служит топливо.

Основными элементами рабочего процесса, осуществляемого в котельной установке, являются:

1) процесс горения топлива,

2) процесс теплообмена между продуктами сгорания или самим горящим топливом с водой,

3) процесс парообразования, состоящий из нагрева воды, ее испарения и нагрева полученного пара.

Во время работы в котлоагрегатах образуются два взаимодействующих друг с другом потока: поток рабочего тела и поток образующегося в топке теплоносителя.

В результате этого взаимодействия на выходе объекта получается пар заданного давления и температуры.

Одной из основных задач, возникающей при эксплуатации котельного агрегата, является обеспечение равенства между производимой и потребляемой энергией. В свою очередь процессы парообразования и передачи энергии в котлоагрегате однозначно связаны с количеством вещества в потоках рабочего тела и теплоносителя.

Горение топлива является сплошным физико-химическим процессом. Химическая сторона горения представляет собой процесс окисления его горючих элементов кислородом.проходящий при определенной температуре и сопровождающийся выделением тепла. Интенсивность горения, а так же экономичность и устойчивость процесса горения топлива зависят от способа подвода и распределения воздуха между частицами топлива. Условно принято процесс сжигания топлива делить на три стадии: зажигание, горение и дожигание. Эти стадии в основном протекают последовательно во времени, частично накладываются одна на другую.

Расчет процесса горения обычно сводится к определению количества воздуха в м3, необходимого для сгорания единицы массы или объема топлива количества и состава теплового баланса и определению температуры горения.

Значение теплоотдачи заключается в теплопередаче тепловой энергии, выделяющейся при сжигании топлива, воде, из которой необходимо получить пар, или пару, если необходимо повысить его температуру выше температуры насыщения. Процесс теплообмена в котле идет через водогазонепроницаемые теплопроводные стенки, называющиеся поверхностью нагрева. Поверхности нагрева выполняются в виде труб. Внутри труб происходит непрерывная циркуляция воды, а снаружи они омываются горячими топочными газами или воспринимают тепловую энергию лучеиспусканием. Таким образом, в котлоагрегате имеют место все виды теплопередачи: теплопроводность, конвекция и лучеиспускание. Соответственно поверхность нагрева подразделяется на конвективные и радиационные. Количество тепла, передаваемое через единицу площади нагрева в единицу времени носит название теплового напряжения поверхности нагрева. Величина напряжения ограничена, во-первых, свойствами материала поверхности нагрева, во-вторых, максимально возможной интенсивностью теплопередачи от горячего теплоносителя к поверхности, от поверхности нагрева к холодному теплоносителю.

Интенсивность коэффициента теплопередачи тем выше, чем выше разности температур теплоносителей, скорость их перемещения относительно поверхности нагрева и чем выше чистота поверхности.

Образование пара в котлоагрегатах протекает с определенной последовательностью. Уже в экранных трубах начинается образование пара. Этот процесс протекает при больших температуре и давлении. Явление испарения заключается в том, что отдельные молекулы жидкости, находящиеся у ее поверхности и обладающие высокими скоростями, а следовательно, и большей по сравнению с другими молекулами кинетической энергией, преодолевая силовые воздействия соседних молекул, создающее поверхностное натяжение, вылетают в окружающее пространство. С увеличением температуры интенсивность испарения возрастает. Процесс обратный парообразованию называют конденсацией. Жидкость, образующуюся при конденсации, называют конденсатом. Она используется для охлаждения поверхностей металла в пароперегревателях.

Пар, образуемый в котлоагрегате, подразделяется на насыщенный и перегретый. Насыщенный пар в свою очередь делится на сухой и влажный. Так как на теплоэлектростанциях требуется перегретый пар, то для его перегрева устанавливается пароперегреватель, в которых для перегрева пара используется тепло, полученное в результате сгорания топлива и отходящих газов. Полученный перегретый пар при температуре Т=540 С и давлении Р=100 атм. идет на технологические нужды.


2. Технология производства тепловой энергии в котельных

Котельные установки в промышленности предназначаются для получения пара, применяемого в паровых двигателях и при различных технологических процессах, а также для отопления, вентиляции и бытовых нужд.